PAUL SCHERRER INSTITUT

Paul Scherrer Institut

G. Bison for the nEDM collaboration

Result of the neutron EDM starch at PSI

Introduction & neutron EDM experiment @ PSI

Results

New experiment n2EDM

History

Filling the precession chamber

FEII Filling the precession chamber

 ν_{rf}

Neutron detection

Ramsey technique

asymmetry A

$$\Delta \nu_L = \frac{4 \, d \, E_0}{h} + \frac{2 \, \mu \, \Delta B}{h} \stackrel{\P}{\longleftarrow} \stackrel{\text{We to classical states}}{\longleftarrow} \quad \text{We to classical states}$$

We use sensitive magnetometers to correct for this B-field dependence.

In total we recorded >50000 cycles in two years

Introduction & old neutron EDM experiment @ PSI

New experiment n2EDM

Search for axion-like dark matter through nuclear spin precession in electric and magnetic fields, Abel et al. Phys Rev X 7,041034 (2017).

____Blinding

_

ocummotry 1

_

Blinding

Effect	shift	error	
Error on $\langle z \rangle$	÷	7	
Higher order gradients \hat{G}	69	10	
Transverse field correction $\langle B_{\rm T}^2 \rangle$	0	5	
Hg EDM[8]	-0.1	0.1	
Local dipole fields	- C -	4	
$v \times E$ UCN net motion	- (-) -	2	
Quadratic $v \times E$	-	0.1	
Uncompensated G drift	-	7.5	
Mercury light shift	-	0.4	
Inc. scattering ¹⁹⁹ Hg	-	7	
TOTAL	69	18	
	10^{-2}	28 ecm	

Systematic uncertainty six times smaller than before.

Measurement of the permanent electric dipole moment of the neutron

C. Abel S. Afach, N. J. Ayres, C. A. Baker, G. Ban, G. Bison, K. Bodek,
V. Bondar, M. Burghoff, E. Chanel, Z. Chowdhuri, P.-J. Chiu, B. Clement,
C. B. Crawford, M. Daum, S. Emmenegger, L. Ferraris-Bouchez, M. Fertl,
P. Flaux, B. Franke, A. Fratangelo, P. Geltenbort, K. Green, W. C. Griffith,
M. van der Grinten, Z. D. Grujic, P. G. Harris, L. Hayen, W. Heil,
R. Henneck, V. Hélaine, N. Hild, Z. Hodge, M. Horras, P. laydjiev,
S. N. Ivanov, M. Kasprzak, Y. Kermaidic, K. Kirch, A. Knecht, P. Knowles,
H.-C. Koch, P.A. Koss, S. Komposch, A. Kozela, A. Kraft, J. Krempel, M.
Kuzniak, B. Lauss, T. Lefort, Y. Lemière, A. Leredde, P. Mohanmurthy,
A. Mtchedlishvili, M. Musgrave, O. Naviliat-Cuncic, D. Pais, F.M. Piegsa,
E. Pierre, G. Pignol, C. Plonka-Spehr, P. N. Prashanth, G. Quéméner,
M. Rawlik, D. Rebreyend, I. Rienäcker, D. Ries, S. Roccia, G. Rogel,
D. Rozpedzik, A. Schnabel, P. Schmidt-Wellenburg, N. Severijns, D. Shiers,
R. Tavakoli, J. A. Thorne, R. Virot, J. Voigt, A. Weis, E. Wursten,
G. Wyszynski, J. Zejma, J. Zenner, and G. Zsigmond,

Phys. Rev. Lett. 124, 081803 (2020)

Public announcement: January 28 2020 during our annual accelerator meeting at PSI

Effect	shift	error	
Error on $\langle z \rangle$	-	7	
Higher order gradients \hat{G}	69	10	
Transverse field correction $\langle B_{\rm T}^2 \rangle$	0	5	
Hg EDM[8]	-0.1	0.1	
Local dipole fields	(-	4	
$v \times E$ UCN net motion	n (a	2	
Quadratic $v \times E$		0.1	
Uncompensated G drift	-	7.5	
Mercury light shift	-	0.4	
Inc. scattering ¹⁹⁹ Hg	÷	7	
TOTAL	69	18	
	10^{-2}	^{28}ecm	

nEDM result

Systematic uncertainty six times smaller than before.

 $d_{\rm n} = (0.0 \pm 1.1_{\rm stat} \pm 0.2_{\rm sys}) \times 10^{-26} \, e \cdot {\rm cm}.$

Effect	shift	error
Error on $\langle z \rangle$		7
Higher order gradients \hat{G}	(69)	10
Transverse field correction $\langle B_{\rm T}^2 \rangle$	J	5
Hg EDM[8]	-0.1	0.1
Local dipole fields	- C 2)	4
$v \times E$ UCN net motion	÷	2
Quadratic $v \times E$		0.1
Uncompensated G drift	-	7.5
Mercury light shift	1 (-)	0.4
Inc. scattering ¹⁹⁹ Hg	÷	7
TOTAL	69	18
	10^{-2}	⁸ ecm

False EDM

$$\Delta \omega = \frac{\gamma^2 B_{xy}^2}{2(\omega_L \pm \omega_r)}$$

$$= \Delta \omega_{EE} + \Delta \omega_{GG} + \Delta \omega_{EG}$$
EDM-like signal: proportional to the E-field and the B-field gradient
$$d_{\text{false}} = \frac{\hbar \gamma_{Hg} \gamma_n}{2c^2} \langle x B_x + y B_y \rangle$$

Pignol & Roccia, Phys. Rev. A 85, 042105 (2012)

Mapping of the magnetic field to correct systematic effects in a neutron electric dipole moment experiment. C. Abel et al., 2021. arXiv: 2103.09039 [physics.ins-det].

Optically pumped Cs magnetometers enabling a high-sensitivity search for the neutron electric dipole moment, C. Abel et al. PRA 101, 053419 (2020)

Introduction & old neutron EDM experiment @ PSI

Results

New experiment n2EDM

_

FED Future n2EDM experiment

Active & passive magnetic shield

Cs magnetometer array

- field homogenization
- online gradient monitoring

Hg co-magnetometers

- primary magnetic correction
- online gradient monitoring

Magnetometer performance comparison

G. Bison, SPIN conference, October 2021 40

FED

Statistical magnetometer performance

He Magnetometer

metastable exchange optical pumping

Design and performance of an absolute ³He/Cs magnetometer H.-C. Koch, G. Bison, Z. D. Grujić, W. Heil, M. Kasprzak, P. Knowles, A. Kraft, A. Pazgalev, A. Schnabel, J. Voigt, A. Weis. Eur. Phys. J. D 69:202 (2015) Investigation of the intrinsic sensitivity of a ³He/Cs magnetometer. H.-C. Koch, G. Bison, Z. D. Grujić, W. Heil, M. Kasprzak, P. Knowles, A. Kraft, A. Pazgalev, A. Schnabel, J. Voigt, A. Weis Eur. Phys. J. D 69: 262 (2015).

The nEDM collaboration

