# Accessing pion GPDs through the Sullivan process: is it feasible?

Based on: hep-ph/2110.06052 hep-ph/2110.09462

## J. M. Morgado<sup>1</sup>, F. De Soto<sup>2</sup>, M. Defurne<sup>3</sup>, C. Mezrag<sup>3</sup>, H. Moutarde<sup>3</sup>, J. Rodríguez-Quintero<sup>1</sup>, J. Segovia<sup>2</sup>

24th International Spin Symposium 20th October 2021

<sup>1</sup>Dpt. Ciencias Integradas, Universidad de Huelva, Huelva, Spain <sup>2</sup>Dpt. Sistemas Fiscos, Químicos y Naturales, Universidad Pablo de Olavide, Sevilla, Spain <sup>3</sup>DPhN/IRFU/CEA-Saclay, Gif-sur-Yvette, France



**U**niversidad de Huelva

Email: josemanuel.morgado@dci.uhu.es

## Introduction

## Introduction

Question: How can we gain insights into hadron's structure?

- **1.** Generalised parton distributions:
  - Probabilistic interpretation: "3D picture" [M.Burkardt-PRD:071503(62)2020]
  - Parametrise DVCS through CFFs. [X.Ji-PRL:610(78)1997]
  - PDFs as forward limit.
  - EFF and GFFs as Mellin moments.
- 2. Pions:
  - DCSB Nambu-Goldstone bosons.
  - Simpler than baryons.



## Introduction

Question: How can we gain insights into hadron's structure?

- **1.** Generalised parton distributions:
  - Probabilistic interpretation: "3D picture" [M.Burkardt-PRD:071503(62)2020]
  - Parametrise DVCS through CFFs. [X.Ji-PRL:610(78)1997]
  - PDFs as forward limit.
  - EFF and GFFs as Mellin moments.
- 2. Pions:
  - DCSB Nambu-Goldstone bosons.
  - Simpler than baryons.

#### Two main questions guide this talk:

- Can we build "theoretically-complete" pion GPD models?
- Can we probe them in experiment?

Pion GPDs through Sullivan process. [D.Amrath et al.-EPJC:179(58)2008]



## **Generalised parton distributions**

**Definition and properties** 

## **GPDs: definition and properties**



- x: Momentum fraction of p.
- $\xi$ : Fraction of momentum longitudinally transferred.
- t: Momentum transfer.

#### Kinematics:

[M.Diehl-Phys.Rept:41(388)2003]

- DGLAP (|x| > |ξ|): Emits/takes a quark (x > 0) or antiquark (x < 0).</li>
- ERBL: (|x| < |ξ|): Emits pair quark-antiquark.



## **GPDs: definition and properties**

#### • Support:

[M.Diehl et al.-PLB:359(428)1998]

$$(x,\xi) \in [-1,1] \otimes [-1,1]$$

#### • **Polynomiality:** Order-m Mellin moments are degree-(m + 1)

#### polynomials in $\xi$ .

[X.Ji-JPG:1181(24)1998, A.Radyushkin-PLB:81(449)1999]

$$\int_{-1}^{1} dx x^{m} H(x,\xi,t) = \sum_{\substack{k=0\\k \text{ even}}}^{m+1} c_{k}^{(m)}(t) \xi^{k}$$

#### **Lorentz invariance**

#### • Positivity:

[P.V.Pobylitsa-PRD:114015(65)2002, B.Pire et al.-EPJC:103(8)1999]

$$|H^q(x,\xi,t=0)| \le \sqrt{q\left(\frac{x+\xi}{1+\xi}\right)q\left(\frac{x-\xi}{1-\xi}\right)} \quad , \qquad |x| \ge \xi$$

#### **Positivity of Hilbert space norm**

## • Low energy soft-pion theorem

#### PCAC/Axial-Vector WTI

## **GPD modelling**

Can we build "theoretically-complete" pion GPD models?

## GPD modelling: general strategy

Question: Can we build pion GPDs fulfilling all these constraints?

1. Overlap representation [M.Diehl et al.-NPB:33(569)2001] Based on LFWFs,  $\Psi^{q}(x, k_{\perp}^{2})$ Polynomiality ? Positivity  $\checkmark$ 

2. Double Distribution representation [D.Müller et al.-Fort.Phys:2(42)1994, JLAB-THY-00-33]

Relying on Radon transform,  $\mathcal{R}$ 



**Problem:** Different modelling strategies and different problems

#### Solution:

**Covariant extension:** given a DGLAP-GPD, the covariant extension allows for computing the corresponding ERBL-GPD such that polynomiality is satisfied.[N.Chouika et al.-EPJC:906(77)2017]

## GPD modelling: covariant extension

**Covariant extension:** given a DGLAP-GPD, the covariant extension allows for computing the corresponding ERBL-GPD such that polynomiality is satisfied.[N.Chouika et al.-EPJC:906(77)2017]

$$H(x,\xi,t) = \mathcal{R}\left[h\left(\beta,\alpha,t\right)\right] + \frac{1}{|\xi|}D^{+}\left(\frac{x}{\xi},t\right) + sign\left(\xi\right)D^{-}\left(\frac{x}{\xi},t\right)$$



- **1.** Build positive DGLAP GPD  $\Rightarrow$  How?
- **2.** Covariant extension: ERBL GPD
- **3.** Soft pion theorem: fix  $D^{\pm}(\alpha, 0)$

| GPD properties                    |   |                                     |   |
|-----------------------------------|---|-------------------------------------|---|
| Support                           |   | Positivity                          |   |
| [Diehl-PLB(1998)]                 | V | [PobyPRD(2002),<br>Pire-EPJC(1999)] | V |
| Polynomiality                     | _ | Soft-pion                           |   |
| [Ji-JPG(1998),<br>RadyuPLB(1999)] | V | [PolyNPB(1999),<br>MezrPLB(2015)]   | V |

### Pion GPDs: from separable LFWFs to postive DGLAP GPDs

Question: How can we build a positive DGLAP GPD?

1. Overlap representation [M.Diehl-NPB:33(569)2001]



$$\begin{split} H^{q}(x,\xi,t)|_{|x|\geq\xi} &= \int \frac{d^{2}k_{\perp}}{16\pi^{3}}\Psi^{q*}\left(x_{-},k_{\perp,-}^{2}\right)\Psi^{q}\left(x_{+},k_{\perp,+}^{2}\right)\\ \textbf{2. Assume factorisation of the LFWF}_{\text{[J.-L.Zhang et al.-PLB:136158(815)2021]}} \end{split}$$

$$\begin{split} \Psi^{q}\left(x,k_{\perp}^{2}\right) &\propto \varphi\left(x\right)\phi\left(k_{\perp}^{2}\right)\\ & \checkmark^{(\text{Overalp rep.})}\\ H^{q}\left(x,\xi,t\right)|_{|x|\geq\xi} &= \sqrt{q\left(\frac{x-\xi}{1-\xi}\right)q\left(\frac{x+\xi}{1+\xi}\right)}\Phi\left(x,\xi,t\right)\\ & \checkmark^{(t=0)}\\ H^{q}\left(x,\xi,0\right)|_{|x|\geq\xi} &= \sqrt{q\left(\frac{x-\xi}{1-\xi}\right)q\left(\frac{x+\xi}{1+\xi}\right)} \end{split}$$

#### Positivity saturated

**Pion DGLAP GPDs** 

#### **Pion GPDs: Positive DGLAP GPDs**

1. Under certain PTIR, chiral symmetry allows to factorize LFWF: [J.-L.Zhang et al.-PLB:136158(815)2021]

$$\Psi_{\pi}^{\lambda_1\lambda_2}\left(x,k_{\perp}^2\right) = \sqrt{q_{\pi}\left(x\right)} \frac{i^{\lambda_1\lambda_2}M^2}{\left(k_{\perp}^2 + M^2\right)^2}$$

2. Pion GPD saturating positivity

$$H_{\pi}^{q}(x,\xi,t)|_{\text{DGLAP}} = \frac{\sqrt{q_{\pi}(x_{-})q_{\pi}(x_{+})}}{(1+z^{2})^{2}} \left[3 + \frac{1-2z}{1+z}\frac{\operatorname{arctanh}\left(\sqrt{\frac{z}{1+z}}\right)}{\sqrt{\frac{z}{1+z}}}\right]$$
$$z = -t\left(1-x\right)^{2}/4M^{2}\left(1-\xi^{2}\right)$$



#### Two models:

- Algebraic model  $q_{\pi}(x) = 30x^2 (1-x)^2$
- Realistic model (DSE) [M.Ding et al.-PRD:054014(101)2020]  $q_{\pi}(x) = \mathcal{N}_{q}x^{2}(1-x)^{2}$  $\times \left[1 + \gamma x (1-x) + \rho \sqrt{x(1-x)}\right]$

7/17

## **Pion GPDs: Positive DGLAP GPDs**



x

Pion ERBL GPDs: covariant extension

## **Pion GPDs: covariant extension**

#### Covariant extension:

$$H^{q}(x,\xi,t) = \mathcal{R}\left[h\left(\beta,\alpha,t\right)\right] + \frac{1}{|\xi|}D^{+}\left(\frac{x}{\xi},t\right) + sgn\left(\xi\right)D^{-}\left(\frac{x}{\xi},t\right)$$

Fix D-terms with soft pion theorem: [M.V.Polyakov-NPB:231(555)1999, C.Mezrag at al.-PLB:190(741)2015]

$$\begin{aligned} H_{\pi^+}^{I=0}\left(x,\xi,t\right)\big|_{\xi=1,t=0} &= H_{\pi^+}\left(x,\xi,t\right) - H_{\pi^+}\left(-x,\xi,t\right)|_{\xi=1,t=0} = 0 \\ H_{\pi^+}^{I=1}\left(x,\xi,t\right)\big|_{\xi=1,t=0} &= H_{\pi^+}\left(x,\xi,t\right) + H_{\pi^+}\left(-x,\xi,t\right)|_{\xi=1,t=0} = \varphi\left(\frac{1+x}{2}\right) \end{aligned}$$



## **Pion GPDs: covariant extension**



x

## **Phenomenology of pion GPDs**

Can we probe them in experiment?

## Phenomenology of pion GPDs: Sullivan process

Question: Can we probe those pion GPDs through experiment? [D.Amrath at al. EPJC:179(58)2008]

Sullivan process [J.D.Sullivan-PRD:1732(5)1972]

Deep inelastic electron-proton scattering with  $\pi n$  fixed final states.

One pion exchange approximation: [D.Amrath et al.-EPJC:179(58)2008]

•  $|t|^{\text{Max.}} = 0.6 \,\text{GeV}^2$  Met at EIC [EICYR:phys.ins-det/2103.05419] •  $\sigma_L >> \sigma_{\perp}$ 



[D.Amrath at al. EPJC:179(58)2008]

## Phenomenology of pion GPDs: Sullivan process

## In fact... this has already been advocated in the EIC-Yellow report $_{\rm [EICYR: phys.ins-det/2103.05419]}$

| Science Question                                                                                                            | Key Measurement                                                                             | Key Requirements                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| What are the quark and gluon energy<br>contributions to the pion mass?                                                      | Pion structure function data over a range<br>of $x$ and $Q^2$ .                             | <ul> <li>Need to uniquely determine         e + p → e' + X + n (low − t)     </li> <li>CM energy range ~10-100 GeV         Charged and neutral currents desirable</li> </ul>                                                                                                                                               |
| Is the pion full or empty of gluons as viewed at<br>large Q <sup>2</sup> ?                                                  | Pion structure function data at large $Q^2$ .                                               | CM energy ~100 GeV     Inclusive and open-charm detection                                                                                                                                                                                                                                                                  |
| What are the quark and gluon energy<br>contributions to the kaon mass?                                                      | Kaon structure function data over a range of $x$ and $Q^2$ .                                | <ul> <li>Need to uniquely determine<br/>e + p → e<sup>l</sup> + X + Λ/Σ<sup>0</sup> (low −l)     </li> <li>CM energy range ~10-100 GeV</li> </ul>                                                                                                                                                                          |
| Are there more or less gluons in kaons than in<br>pions as viewed at large Q <sup>2</sup> ?                                 | Kaon structure function data at large $Q^2$ .                                               | CM energy ~100 GeV     Inclusive and open-charm detection                                                                                                                                                                                                                                                                  |
| Can we get quantitative guidance on the<br>emergent pion mass mechanism?                                                    | Pion form factor data for $Q^2 = 10.40 (\text{GeV}/c)^2$ .                                  | <ul> <li>Need to uniquely determine exclusive process         e + p → e' + π<sup>+</sup> + n (low − l)     </li> <li>e + p and e + D at similar energies     </li> <li>CM energy ~10-75 GeV</li> </ul>                                                                                                                     |
| What is the size and range of interference<br>between emergent-mass and the Higgs-mass<br>mechanism?                        | Kaon form factor data for $Q^2 = 10$ -20 (GeV/ $c$ ) <sup>2</sup> .                         | <ul> <li>Need to uniquely determine exclusive process         e + p → e' + K + Λ (low − l)     </li> <li>L/T separation at CM energy ~10-20 GeV         A/Σ<sup>0</sup> ratios at CM energy ~10-50 GeV     </li> </ul>                                                                                                     |
| What is the difference between the impacts of<br>emergent- and Higgs-mass mechanisms on<br>light-quark behavior?            | Behavior of (valence) up quarks in pion<br>and kaon at large x.                             | CM energy ~20 GeV (lowest CM energy to ac-<br>cess large-x region)     Higher CM energy for range in Q <sup>2</sup> desirable                                                                                                                                                                                              |
| What is the relationship between dynamically<br>chiral symmetry breaking and confinement?                                   | Transverse-momentum dependent<br>Fragmentation Functions of quarks into<br>pions and kaons. | <ul> <li>Collider kinematics desirable (as compared to<br/>fixed-target kinematics)</li> <li>CM energy range ~20-140 GeV</li> </ul>                                                                                                                                                                                        |
| More speculative observables                                                                                                |                                                                                             |                                                                                                                                                                                                                                                                                                                            |
| What is the trace anomaly contribution to the<br>pion mass?                                                                 | Elastic $J/\Psi$ production at low $W$ off the pion.                                        | <ul> <li>Need to uniquely determine exclusive process         e + p → e' + //Ψ + π<sup>+</sup> + n (low -1)     </li> <li>High luminosity (≥ 10<sup>3</sup> cm<sup>-2</sup> sec<sup>-1</sup>)     </li> <li>CM energy ~70 GeV     </li> </ul>                                                                              |
| Can we obtain tomographic snapshots of the<br>pion in the transverse plane? What is the<br>pressure distribution in a pion? | Measurement of DVCS off pion target as<br>defined with Sullivan process.                    | <ul> <li>Need to uniquely determine exclusive process         <i>e</i> + <i>p</i> → <i>e'</i> + <i>γ</i> + <i>π<sup>+</sup></i> + <i>π</i> (low −<i>l</i>)     </li> <li>High luminosity (≥ 10<sup>34</sup> cm<sup>-2</sup> sec<sup>-1</sup>)     </li> <li>CM energy ~10-100 GeV</li> </ul>                               |
| Are transverse momentum distributions<br>universal in pions and protons?                                                    | Hadron multiplicities in SIDIS off a pion<br>target as defined with Sullivan process.       | <ul> <li>Need to uniquely determine SIDIS off pion         <i>c</i> + p → <i>c'</i> + h + X + π (low −<i>t</i>)     </li> <li>High luminosity (10<sup>34</sup> cm<sup>-2</sup> sec<sup>-1</sup>)         <i>c</i> + p and <i>c</i> + <i>D</i> at similar energies desirable     </li> <li>CM energy ~10-100 GeV</li> </ul> |

Let us see if that would be feasible in a future electron-ion collider.

## Phenomenology of pion GPDs: DVCS

**Goal:** Employ our GPD models to describe the DVCS contribution to the Sullivan process in the one pion exchange approximation.



 $\mathcal{M}_{e\pi} = \mathcal{M}_{\rm DVCS} + \mathcal{M}_{\rm BH}$ 

## Phenomenology of pion GPDs: DVCS

**Goal:** Employ our GPD models to describe the DVCS contribution to the Sullivan process in the one pion exchange approximation.



**QCD** evolution

## Phenomenology of pion GPDs: QCD evolution



- Uncertainty band narrowed by scale evolution.
- Continuity along  $x = \xi$  lines.
- Non-zero gluon distribution generated by scale evolution.

**Compton form factors** 

## Phenomenology of pion GPDs: Compton Form Factors



- Undistinguishable results for both models
- Dominant effect of NLO corrections (gluon distributions)

Gluon dominance makes essential at least NLO accuracy in any phenomenlogical analysis of DVCS at an EIC.

DVCS cross-section and beam spin asymmetries

## Phenomenology of pion GPDs: Generating events

Question: Can we measure DVCS?

#### Sullivan process amplitude

1. One pion exchange approx.

 $\left| t_{\pi}^{\mathrm{Max}} \right| = 0.6 \,\mathrm{GeV}^2, \quad \sigma_L >> \sigma_{\perp}$ 

- $\mathcal{M}_{e\pi} = \mathcal{M}_{\mathrm{DVCS}} + \mathcal{M}_{\mathrm{BH}}$
- 2. Monte Carlo event generation
  - Select event compatible with detector geometry and performance: EIC. [EICYR:phys.ins-det/2103.05419]
  - Add kinematical cuts: [D.Amrath et al. EPJC:179(58)2008]
    - DVCS kinematics and one pion exchange approximation:
      - $s_{\pi}^{\text{Min}} = 4 \,\text{GeV}^2$
      - $|t_{\pi}|^{\text{Max.}} = 0.6 \,\text{GeV}^2$
    - Reduce contamination of resonances ( $\Delta$ ):  $W \gtrsim 2 \,\mathrm{GeV}^2$
  - Integrated one-year luminosity



## Phenomenology of pion GPDs: EIC



- Visible signal at EIC
- "Destructive interference" between quark and gluon content
- Sign change in beam spin asymmetry due to gluon contributions

Summary and perspectives

## **Summary and perspectives**

• GPD modelling: can we build "theoretically-complete" GPDs?

#### YES! Pion GPD models fulfilling every theoretical constraint

- Positivity: factorisation hypothesis
- Polynomiality: covariant extension
- Support and soft-pion theorem
- Continuity along  $x = \xi$
- Low-t behaviour in agreement with data
- Phenomenology: can we probe pion GPDs in experiment?

#### YES!

- Signal expected at EIC kinematics
- Gluon-quark "destructive interference"
- Gluon dominance: NLO analyses
- Gluon dominance: Beam spin asymmetry sign change

**Thank you!**