LEPS EXPERIMENTS WITH POLARIZED PHOTONS

PHOTOPRODUCTION OF HADRONS WITH COMPTON BACKSCATTERED PHOTON FACILITIES, LEPS AND LEPS2

Jung Keun Ahn for the LEPS/LEPS2 Collaborations (Korea University)

N2021 The 24th International Spin Symposium

18-22 October 2021 Matsue, Shimane Prefecture, Japan

Outline

- 1. Highlights from the LEPS experiments.
- Current status of the LEPS2 photoproduction experiments using Compton-backscattered photons from 8-GeV electrons at SPring-8, Japan.
- 3. Selected physics programs with the LEPS2 detector.

LEPS and LEPS2 at SPring-8

Detector

Spectrometer

Calorimeter Spectrometer

- In the vector meson dominance (VMD) model for photoproduction, a real photon can fluctuate into a virtual vector meson $V = \{\rho, \omega, \phi\}$, which subsequently scatters off the target proton.
- The ϕ meson production has the unique feature within gluon dynamics of being a result of OZI suppression due to the dominant \overline{ss} structure.

O Differential cross sections for ϕ photoproduction in the reaction $\gamma p \rightarrow p\phi$ followed by $\phi \rightarrow K^+ K^{-a}$ and $K_S K_L^{\ b}$ show some enhancement in the photon beam energy range near 2.1 GeV.

^a K. Mizutani *et al.* (LEPS Collab), PRC 96, 062201(*R*)(2017); B. Dey *et al.* (CLAS Collab), PRC 89, 055208(2014) ^b H. Seraydaryan *et al.* (CLAS Collab), PRC 89, 055206(2014).

Decay Angular Distribution and SDMEs

- $\overline{\rho}_{1-1}^1$ deviates largely from the model prediction in 1.97 < E_{γ} < 2.17 GeV, which reflects the contributions of *N*^{*} resonances. ^{*a*}
- The \sqrt{s} = 2.1 GeV bump structure was reconfirmed without the ϕ − Λ (1520) interference region. ^{*b*}

^{*a*}K. Mizutani *et al.*, PRC 96, 062201(*R*)(2017).

^bS.Y. Ryu et al. (LEPS Collab), PRL 116, 232001(2016).

GeV Photon Beam at LEPS2/SPring-8

Backward Compton Scattered Photon Beam

LEPS2 BGOegg Detector

ω Photoproduction with LEPS2 BGOegg Detector

- The measured \(\rho_{1-1}^1\) is close to zero for all kinematical bins.
- \bigcirc The observed hehaviors of the helicity-flip amplitudes surely reflects the contributions of N^* resonances. a

^aN. Muramatsu et al. (LEPS2 Collab), PRC 102, 025201(2020).

LEPS2 Solenoid Spectrometer

 The LEPS2 solenoid spectrometer consists of TPC, SC, DCs, Forward and barrel RPCs, and Barrel Pb/Scint calorimeter (14.3 X₀) as well as a photon tagger placed approximately 100 m upstream from the detector.

October 22, 2021 Slide 11

LEPS2 Trigger and DAQ System

TPC readout electronics

 We have developed a new, network-distributed data acquisition system based on DAQ-middleware framework.^a

^a S. Y. Ryu for LEPS2 Collab., AIP Conf. Proc. 2249, 030024 (2020). October 22, 2021 Slide 12

Time Projection Chamber

 \land A decays are successfully reconstructed with *p* and π^- tracks in the first beam commissioning dataset.^{*a*}

R. Kobayakawa for LEPS2 Collab. JPS fall meeting, 2021.

Strange Partner *P_s* of *P_c* Pentaquark States

Strange Partner of P_c Pentaquark States

- The bump structure observed in ϕ photoproduction could be regarded as a ΣK^* molecular state ($J = 3/2^-$). ^{*a*}
-) Triangular singularity could also explain the bump structure with $\Sigma K^* \to \phi p.^b$

The measured parity spin asymmetry shows that natural-parity exchange is dominant in $\gamma p \rightarrow K^{*0}\Sigma^+$ reaction, which clearly indicates the need for *t*-channel exchange of the κ scalar meson. ^{*c*}

^CS.H. Hwang et al. (LEPS Collab.), PRL 108, 092001(2012).

^{*a*}J. He, PRD 95, 074031(2017).

^bJ-J. Xie and F-K Guo, PLB 774, 108 (2017).

○ Meson-baryon rescattering processes via N^* resonance(s) could account for the bump structure observed in ϕ photoproduction at $\sqrt{s} = 2.1$ GeV.

○ The nature of the bump structure should be further investigated using circularly polarized photon beam and a polarized (HD) target. This populates selectively a contribution of either J = 1/2 or $J = 3/2 N^*$ resonance.

Scheluchin et al. (BGOOD Collab), arXiv: 2108. 12235 (2021); H. Kohri et al. (LEPS Collab), PRL 104, 172001(2010). October 22, 2021 Slide 16

Θ^+ Search at LEPS

 Θ^+ was searched for in $\gamma n(p) \to K^+ K^- n(p)$ reaction with a LD₂ target. We have collected data in three phase LD₂ runs.

Θ^+ Search at LEPS2

- $\Theta^+(S = +1, uudd\bar{s})$ could be searched for via $\gamma d \to K^- K^0 pp (\Theta^+ \to K^0 p; K^0(K_S) \to \pi^+\pi^-)$ by complete kinematics.
- All final state particles can be reconstructed with the large-acceptance LEPS2 detector.

Photoproduction of $\Lambda(1405)$ with K^{*+}

- $K^{*+}(\rightarrow \pi^+ K_S^0)$ decay plane $\perp(||)$ the photon beam polarization ($\hat{\epsilon}$) for unnatural-parity exchange (natural-parity exchange)
- Unnatual-parity K^- exchange selects $\Lambda(1405)$ strongly coupled to a K^-p pole .^{*a*}
- I = 0 channel $\Lambda(1405) \rightarrow \Sigma^0 \pi^0$ can be reconstructed using Barrel- γ detector.

^a Jido et al., NPA 725, 181(2003); T. Hyodo et al., PLB 593, 75(2004). October 22, 2021 Slide 19

- A new LEPS2 facility with BGOegg and Solenoid detectors has started its full operation for studying hadron spectroscopy from photoproduction using high-intensity Compton backscattered photons at SPring-8.
- Linearly polarized photon beams are very powerful to unveil the nature of hadrons from photoproduction; φ, K*, Λ(1405), K⁻pp, Θ⁺ and so on.
- The LEPS2 solenoid detector, consisting of a large solenoid magnet and a time projection chamber, has recently completed its first phase of beam commissioning and physics running. Analysis effort of the first dataset is now underway.

