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The Spinquest Detector UNIVERSITY
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Beam spill every
minute, 4.4
seconds on, 55.6
seconds off.

Kei Nagai, LANL



Raw Data

e Each detector hit outputs 2 or 3

values:

o Detector ID

o ElementID

o  Drift Time (proportional tubes and drift
chambers)

e Each spill has 30,000-50,000
events, each with about 500 hits.

e This gives us 15-25 million hits to
sort through each spill.
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Challenges for SpinQuest Tracking U :i%r&{

e Data is extremely noisy.

o  Approximately 1 good dimuon event in every 10

events. %
o  Around 30 physics events for every 50,000 noise %
events. -
o  Approximately 30 ‘tracklets’ per plane per event.
e The process that we're interested in Detector ID

(Drell-Yan and J/Psi) are very close in mass,
which makes them difficult to separate.

e Final results very sensitive to any
asymmetries caused by external factors, so
online monitoring needs to be precise to
detect false asymmetries.
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K-Tracker

Event Reducer

Remove
- out-of-time hits
- clusters

Cut events based on
multiplicity in
chambers, prop
tubes, trigger roads.

hits

Kalman Fast Tracking

Build triplets in stations 2 & 3 |

!

|Connect triplets from 2 & 3 I

!

Use sagitta to project track
from station 2 & 3 to station 1

Single PT Kick through KMag

Triplets from
chambers

Step 2:assos " e

Step |:X view

Step 3:assockte

Build triplet in station 1 and
connect with projection

Remove bad hits by track
comparison

l

Finetune fit with Kalman Filter
and drop low quality tracks

tracks

Vertex Finding

Swim single muon tracks
through magnetic fields and
iron beam dump

2 L K

Kalman fit vertex for the

dimuon pair from tracks
Ref: CBM-SOFT-note-2006-001 by

S. Gorbunov and I. Kisel

Noah Waurfel, University of Michigan



Another Possible Solution: Machine Learning
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Meaningful
Compression

Structure Image

o Customer Retention
Discovery Classification

Big daa Dimensionality Feature Idenity Fraud

i % Classification Diagnostics
Visualistaion Reduction Elicitation Detection

Advertising Popularity
Prediction
Learmng Learning Weather

Forecasting

Recommender Unsupervised SuperVISGd

Systems

Clustering Regression
Targetted

Marketing

Machine Y=

Market
Forecasting

Customer

Sl L carning

Estimating
life expectancy

Real-time decisions Game Al

Reinforcement
Learning
Robot Navigation Skill Acquisition

Learning Tasks



The many flavors of machine learning

Meaningful
Compression

Structure
Discovery

Customer Retention

Big data Dimensionality Feature i Classification
Visualistaion Reduction Elicitation

Recommender : - Advertising Popularity
Unsupervised Supervised Prediction

Systems ;
Learning Learning Weather

Forecasting
Clustering .
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Marketing Growth
Prediction
Customer
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Real-time decisions

Reinforcement
Learning
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Machine Learning: Regression

Source: Bloomberg, ANZ Research



Q-Tracking Approach

DAQ

Hit Removal and
Dimuon Classifier

Read in raw detector hits.

Momentum
Reconstruction
Regression
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Dimuon Momenta

Output hits for dimuons

Vertex Finding
Regression

Output Data

Signal Probability

rtex Position| - Sijgnal Probability

Classification




Q-Tracking Approach

DAQ

Still developing this process

Developed but still optimizing
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Hit Removal and

\

Dimuon Classifier

\/

Read in raw detector hits.

Momentum
Reconstruction
Regression

Dimuon Momenta

/

Dutput hits for dimuons

\

Vertex Finding
Regression

Output Data

Signal Probability

rtex Position

Signal Probability
Classification




. . Nl
J/Psi Monte Carlo Peak Reconstruction UW‘"ﬁsm
JVIRGINIA
mass
N Entnes — 54848
B Mean 3.115
s000 Moe s
L Constant 53524289
- Mean 3.115+0.001
- | Sigma___ 0.2038 + 0.0007
4000_—'
.E 3000:—
3 8
O -
2000_—
1000~
O e L

Mass (GeV)



Px Py Pz
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Evaluating data trained with a different process UNIVERSITY
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e Performing regression and classification on a neural network is a series of
matrix operations.

e GPUs allow for much more parallelization than CPUs. A typical CPU will have
8-16 threads, while a GPU can have 1,000+ threads.

e Different types of cores on GPU: Cuda Cores and Tensor Cores. Tensor
Cores allow for even faster processing, since multiple operations can be done
in a single clock cycle.

e Trade-off is memory allocation and loading data onto the GPU. This adds a
latency time, so processes that trade back and forth between CPU and GPU

can be bogged down.



Why GPUs

Machine learning is
“‘embarrassingly parallel”

GPUs have dedicated VRAM,
which allows other operations to
run on the CPU concurrently.

Cuda Cores vs Tensor Cores

Cost of consumer grade vs data
center grade
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e ONNX takes a trained neural network

(from a variety of frameworks) as an
input and outputs an ONNX model.
e That model can then be run using

ONNX Runtime.
e ONNX Runtime uses an extensible
architecture, which allows it to use

local optimizers and hardware
accelerators.

e This allows inference to happen

upwards of 15x faster than with R U N —l_ | M E

non-optimized frameworks.



How ONNX Runtime Works PRI
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ONNX

Converts framework into ONNX Model

ONNX Runtime

Abstracts the underlying hardware




Comparison of analysis time (after filtering)

Time to Evaluate 50,000 Detector Events and Output Results

Wall Clock Time (s)
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Evaluation and histogramming
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Plans for Online Monitoring System U%I\Illliéé{%?\]%

e Qutput the reconstructed kinematic data between spills each minute.

e Use reconstructed kinematic data to detect any false asymmetries in the data.
Asymmetries should not be measurable on a spill-by-spill basis.

e Generate images of the path of dimuons through detector arrays.

e Train an additional model to detect unexpected changes in detected events,
as they could be a sign of target damage or other problems that need to be
addressed.



Online Monitoring Mock-Up
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Dimuon Tracks
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OPERATING NORMALLY

NO ASYMMETRY DETECTED

DY Detected: 4
J/Psi Detected: 26
Mean muon mass: 3.43 GeV




Summar il
Y R

e SpinQuest online monitoring offers unique challenges that will require new,

faster approaches.

e One of a few methods being pursued is to utilize neural networks to aid with
filtering and reconstruction.

e This method shows promising results, but work is ongoing to fine-tune.

e Methods are available to accelerate evaluation, letting us perform the online
monitoring within the time constraints while not sacrificing accuracy and
precision.



e,

SpinQuest Collaboration L%;!r%"gsm

RGINIA
Contact Spokespersons: Kun Liu (liuk@fnal.gov) - LANL

Dustin Keller (dustin@yvirginia.edu) - UVA

More information: https://spinquest.fnal.gov/

Schedule/Status:

e Ongoing since summer 2018: Equipment commissioning
e Winter 2021-22: Beam commissioning planned start

2% Fermilab
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