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Beam spill every 
minute, 4.4 
seconds on, 55.6 
seconds off.

The Spinquest Detector

Kei Nagai, LANL



Raw Data

● Each detector hit outputs 2 or 3 
values:

○ Detector ID
○ Element ID
○ Drift Time (proportional tubes and drift 

chambers)
● Each spill has 30,000-50,000 

events, each with about 500 hits.
● This gives us 15-25 million hits to 

sort through each spill.
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Challenges for SpinQuest Tracking

● Data is extremely noisy.
○ Approximately 1 good dimuon event in every 10 

events.

○ Around 30 physics events for every 50,000 noise 
events.

○ Approximately 30 ‘tracklets’ per plane per event.

● The process that we’re interested in 
(Drell-Yan and J/Psi) are very close in mass, 
which makes them difficult to separate.

● Final results very sensitive to any 
asymmetries caused by external factors, so 
online monitoring needs to be precise to 
detect false asymmetries.
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K-Tracker

Noah Wurfel, University of Michigan



Another Possible Solution: Machine Learning



The many flavors of machine learning



The many flavors of machine learning



Machine Learning: Classification



Machine Learning: Regression



Q-Tracking Approach

DAQ Hit Removal and 
Dimuon Classifier

Read in raw detector hits.
Vertex Finding 

Regression

Output hits for dimuons

Momentum 
Reconstruction 

Regression

Signal Probability 
Classification

Vertex Position

Output Data
Dimuon Momenta

Signal Probability
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Still developing this process

Developed but still optimizing



J/Psi Monte Carlo Peak Reconstruction
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Momentum, mass, and 
vertex plots are deviation 
from true values of Monte 
Carlo data.
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Evaluating data trained with a different process
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Accelerating Neural Networks

● Performing regression and classification on a neural network is a series of 
matrix operations.

● GPUs allow for much more parallelization than CPUs. A typical CPU will have 
8-16 threads, while a GPU can have 1,000+ threads.

● Different types of cores on GPU: Cuda Cores and Tensor Cores. Tensor 
Cores allow for even faster processing, since multiple operations can be done 
in a single clock cycle.

● Trade-off is memory allocation and loading data onto the GPU. This adds a 
latency time, so processes that trade back and forth between CPU and GPU 
can be bogged down.



Why GPUs

● Machine learning is 
“embarrassingly parallel”

● GPUs have dedicated VRAM, 
which allows other operations to 
run on the CPU concurrently.

● Cuda Cores vs Tensor Cores

● Cost of consumer grade vs data 
center grade



ONNX (Open Neural Network eXchange)

● ONNX takes a trained neural network 
(from a variety of frameworks) as an 
input and outputs an ONNX model.

● That model can then be run using 
ONNX Runtime.

● ONNX Runtime uses an extensible 
architecture, which allows it to use 
local optimizers and hardware 
accelerators.

● This allows inference to happen 
upwards of 15x faster than with 
non-optimized frameworks.



How ONNX Runtime Works

Abstracts the underlying hardware

Converts framework into ONNX Model



Comparison of analysis time (after filtering)



Plans for Online Monitoring System

● Output the reconstructed kinematic data between spills each minute.

● Use reconstructed kinematic data to detect any false asymmetries in the data. 
Asymmetries should not be measurable on a spill-by-spill basis.

● Generate images of the path of dimuons through detector arrays.

● Train an additional model to detect unexpected changes in detected events, 
as they could be a sign of target damage or other problems that need to be 
addressed.



Online Monitoring Mock-Up

Kinematics Dimuon Tracks

OPERATING NORMALLY
DY Detected: 4
J/Psi Detected: 26
Mean muon mass: 3.43 GeV

NO ASYMMETRY DETECTED



Summary

● SpinQuest online monitoring offers unique challenges that will require new, 
faster approaches.

● One of a few methods being pursued is to utilize neural networks to aid with 
filtering and reconstruction.

● This method shows promising results, but work is ongoing to fine-tune.

● Methods are available to accelerate evaluation, letting us perform the online 
monitoring within the time constraints while not sacrificing accuracy and 
precision.



SpinQuest Collaboration
Contact Spokespersons: Kun Liu (liuk@fnal.gov) - LANL 

Dustin Keller (dustin@virginia.edu) - UVA

More information: https://spinquest.fnal.gov/

Schedule/Status:

● Ongoing since summer 2018: Equipment commissioning
● Winter 2021-22: Beam commissioning planned start
● 2022-2024: Experiment runs
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