Online Reconstruction on GPUs for J/Ψ TSSA Study at SpinQuest

Catherine Ayuso (on behalf of the E1039/SpinQuest Experiment) Mississippi State University October 18-22, 2021 The 24th International Spin Symposium (SPIN 2021)

Outline

1. The FNAL SpinQuest Experiment

SpinQuest Motivation: Sivers Functions

 \Box Measurement of Transverse Single Spin Asymmetry (TSSA) via J/ ψ

Production

Anticipated Uncertainty for J/ψ TSSAs

The SpinQuest Spectrometer

2. Online Reconstruction (OR) on GPUs at SpinQuest

Overview and Status

3. Summary

SpinQuest Motivation: Sivers Functions

Explore the anti-quark and gluon Sivers

functions, f_{1T}^{\perp} :

$$f_{1T}^{\perp} = \underbrace{\bullet}_{T} \cdot \underbrace{\bullet}_{T}$$

- Large TSSAs and $A_N (\propto f_{1\tau}^{\perp})$ were observed in polarized pp-collisions
- Study/constrain antiquark and gluon orbital angular momentum contributions to proton spin

 $A_N = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$

Sivers Functions at SpinQuest

- Measure azimuthal asymmetry, A_N, in:
 - DY dimuon production \rightarrow study anti-quark Sivers
 - J/ ψ meson dimuon decay \rightarrow study gluon Sivers

Measurement of TSSA via J/ψ Production

- The SpinQuest experiment: access • to dimuon decay of the J/ ψ meson (charm, anti-charm bound state)
- Mechanisms: •
 - gluon-gluon (g-g) fusion 1.
 - quark anti-quark (q-q-) annihilation 2.

Measurement of TSSA via J/ψ Production

- TSSAs (up to ~40%) observed in light hadron production in 0.1 < x < 0.5
- g-g fusion: dominant mechanism for J/ψ production at SpinQuest
 - $\,\circ\,$ Acceptance $x_{_F}{\gg}0$ at J/ ψ mass
 - q-q-bar vs. g-g / sum of cross sections → gg
 mechanism dominant at SpinQuest's E_{cm} (= 15 GeV)
 for x_F > 0.42
- J/ψ TSSA: study of gluon Sivers and QCD dynamics in hadron production with improved statistics in higher x_F region!

Anticipated Uncertainty for J/ψ TSSAs

The SpinQuest Spectrometer

- Dynamic nuclear polarization (~ 80% target polarization at 4% uncertainty)
- Kept at 1K in 5T field, polarization flip every 8 hours

Tracking Framework Overview

Tracking Framework Overview

10

station-4

Tracking Framework Overview

GPU OR Motivation

- Use multi-threaded application to:
 - Improve performance of event reduction and track reconstruction
 - Test using SeaQuest data and Monte
 Carlo simulations
- Implement in CUDA with Nvidia GPUs
- Other GPU applications: gaming, driverless cars, AI training...

- Multithreading and multistreaming
- Cross-platform compatibility with CPU architectures
- Single transfer of data to GPU device
- No dynamic memory allocation
- Pass through events that will not finish in time via scheduling

- Parallelization schema: defined at each stage
 - Pre-tracking and triplet hit construction → simple,
 fixed parallelization schema (1 thread per event)
 - Tracklet/track χ^2 analysis \rightarrow tailored to fitting needs,

for each fitting subroutine

threadIdx.x	threadIdx.x	threadIdx.x	threadIdx.x
0 1 2 3 4 5 6 7	0 2 3 4 5 6 7	0 2 3 4 5 6 7	0 2 3 4 5 6 7
blockldx.x = 0	blockldx.x = 1	blockldx.x = 2	blockldx.x = 3

blockDim.x

int const shared_size = blockDim.x / n_fits_per_block; int const fit_in_block = threadIdx.x / shared_size; int const fit_piece = blockIdx.x / n_fits; int const fit_index = blockIdx.x * n_fits_per_block + fit_in_block - fit_piece * n_fits; int const point_index = threadIdx.x - fit_in_block * shared_size + fit_piece * shared_size; int const first_point = fit_index * n_points;

Performance Metrics

- From Gpufit library--Przybylski,
 A., J. et al. Gpufit: An open-source toolkit for GPU-accelerated curve fitting (2017)
 - o github.com/gpufit/Gpufit
- Plot: comparison of execution times for each section of the Cpufit and Gpufit programs
 - o 2D Gaussian fits
- All sections of the fit algorithm required less time when executed on the GPU

Performance Metrics

Process	Time (s)		
Read and prepare events from loaded file (CPU)	1.92		
Copying data (host to device)	0.44		
Event reducer (GPU)	0.81		
GPU parameters: 20 blocks, 512 threads per block, 10240 threads (9607 events processed, 114MB)			

Processor/Process	Time (s)	# of Fits	
CPU/ TKL	21.905	564,946	×30
gpu/ tkl	0.765	564,946	
CPU/ <mark>BPT</mark>	98.67	345,378	×20
GPU/ BPT	4.561	345,378	~20
CPU/GT	253.891	302,734	
GPU/ <mark>GT</mark>	17.876	302,734	×15

Compared to ~ <u>6 minute</u> processing time on CPU!

Summary

- Polarized DY and J/ ψ data at SpinQuest will help constrain important antiquark and gluon Sivers functions
 - $\circ~$ First J/ $\psi~$ TSSA measurement will be available quickly and with good statistical precision
- Track reconstruction software on GPUs will:
 - Lay groundwork for next tracking stage: vertex reconstruction
 - Allow for efficient monitoring of data quality
 - Improve reconstruction speed and performance
 - Help pave the way for robust analyses at SpinQuest

This work is supported in part by the US DOE contract # DE-FG02-07ER41528

Back up

Anticipated Uncertainty for J/ψ TSSAs

