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DVCS and generalized parton distributions

1. Deeply virtual Compton scattering
and generalized parton distributions
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DVCS and generalized parton distributions

DVCS is the scattering of a lepton on a hadron via a photon of large virtuality, producing a
real photon in the final state. It is an exclusive process with an intact recoil proton.
• x is the average light-front plus-momentum (longitudinal momentum in a fast moving

hadron) fraction of the struck parton
• ξ describes the light-front plus-momentum transfer, linked to Björken’s variable xB
• t = ∆2 is the total four-momentum transfer squared

Tree-level depiction of DVCS for x > |ξ| (left) and ξ > |x | (right)

GPDs were introduced more
than two decades ago in
[Müller et al, 1994],
[Radyushkin, 1996] and [Ji,
1997].
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DVCS and generalized parton distributions

• For a large photon virtuality Q2 = −q2, finite xB and small total four-momentum transfer
squared t, factorisation theorems describe the amplitude of DVCS, parametrised by
Compton form factors (CFFs) F , as convolutions of perturbative coefficient functions
T a and non-perturbative generalised parton distributions (GPDs) F a:

CFF convolution (leading twist) [Radyushkin, 1997], [Ji, Osborne, 1998], [Collins,
Freund, 1999]

F(ξ, t,Q2) =
∑

parton type a

∫ 1

−1

dx

ξ
T a

(
x

ξ
,
Q2

µ2
, αs(µ2)

)
F a(x , ξ, t, µ2) (1)

F a(x , ξ, t, µ2) → F g (x , ξ, t, µ2)/x for the usual definition of gluon GPD

µ is the factorisation / renormalisation scale, αs the strong coupling.
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DVCS and generalized parton distributions

• The forward limit gives back the PDF:

Hq(x , ξ = 0, t = 0, µ2) = f q(x , µ2) (2)

• Polynomiality property: [Ji, 1998], [Radyushkin, 1999] due to Lorentz covariance,∫ 1

−1
dx xnHq(x , ξ, t, µ2) =

n+1∑
k=0 even

Hq
n,k(t, µ2)ξk (3)

This property implies that the GPD is the Radon transform of a double distribution F q

(DD) with an added D-term on the support Ω = {(β, α) | |β|+ |α| ≤ 1}:

Double distribution formalism [Radyushkin, 1997], [Polyakov, Weiss, 1999]

Hq(x , ξ, t, µ2) =

∫
Ω
dβdα δ(x − β − αξ)

[
F q(β, α, t, µ2) + ξδ(β)Dq(α, t, µ2)

]
(4)
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DVCS and generalized parton distributions

Impact parameter distribution (IPD) [Burkardt, 2000]

Ia(x ,b⊥, µ
2) =

∫
d2∆⊥
(2π)2

e−ib⊥·∆⊥F a(x , 0, t = −∆2
⊥, µ

2) (5)

is the density of partons with plus-momentum x and transverse position b⊥ from the center of
plus momentum in a hadron → hadron tomography

Density of up quarks (valence GPD) in an unpolarized proton from a parametric fit to DVCS
data in the PARTONS framework [Moutarde et al, 2018].
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Extraction of GFFs

2. Warming-up: extraction of gravitational form
factors from experimental data
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Extraction of GFFs

• The energy-momentum tensor (EMT) is parametrised in terms of gravitational form
factors (GFFs), which can remarkably be accessed from GPDs. We focus on the GFF
Cq(t, µ2) since it only depends on the D-term thanks to the polynomiality property via∫ 1

−1
dz zDq(z , t, µ2) = 4Cq(t, µ2) (6)

• The experimental data is sensitive to the D-term through the subtraction constant
defined by the dispersion relation (see e.g. [Diehl, Ivanov, 2007])

Dispersion relation

CH(t,Q2) = ReH(ξ, t,Q2)− 1

π

∫ 1

0
dξ′ ImH(ξ′, t,Q2)

(
1

ξ − ξ′
− 1

ξ + ξ′

)
(7)

=
2

π

∑
parton type a

∫ ∞
1

dω ImT a

(
ω,

Q2

µ2
, αs(µ2)

)∫ 1

−1
dα

Da(α, t, µ2)

ω − α
(8)
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Extraction of GFFs

• For instance, in a LO study, the quark contribution to the subtraction constant reads∫ 1

−1
dz

Dq(z , t, µ2)

1− z
but we are interested in

∫ 1

−1
dz zDq(z , t, µ2) (9)

• This is a prototype of the more complicated GPD extraction problem we will face later
on. The known solution is through evolution.
• Let’s expand the D-term on a basis of Gegenbauer polynomials

Dq(z , t, µ2) = (1− z2)
∑

odd n

dq
n (t, µ2)C

3/2
n (z) (10)

Then

GFF Ca extraction∫ 1

−1
dz

Dq(z , t, µ2)

1− z
= 2

∑
odd n

dq
n (t, µ2) and

∫ 1

−1
dz zDq(z , t, µ2) =

4

5
d1(t, µ2) (11)
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Extraction of GFFs

• Because Gegenbauer polynomials diagonalize the LO ERBL [Lepage, Brodsky, 1979],
[Efremov, Radyushkin, 1979] evolution kernel, each term dq

n (t, µ2) actually d±n but that does not change

the argument evolves multiplicatively with a different anomalous dimension. Since exponentials
are a free family on any non-vanishing interval, the decomposition∫ 1

−1
dz

Dq(z , t, µ2)

1− z
= 2

∑
odd n

dq
n (t, µ2) (12)

is unique, non-ambiguous and theoretically allows to entirely retrieve the D-term
from the knowledge of the subtraction constant on any non-vanishing interval in
Q2 = µ2.

• All is well on paper, but what about in real life?
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Extraction of GFFs

Complete details found in [Dutrieux et al, Eur.Phys.J.C 81 (2021) 4, 300] see talk by H.
Moutarde on Wednesday 16:30 - Joint GPD - Future session. We perform a neural
network fit of CFFs over world DVCS data, which gives a subtraction constant compatible
with 0 → also found in [Kumericki, 2019]. Then fixing the t-dependence with an Ansatz and
assuming all dn for n > 1 to be 0 gives

In green, 68% confidence interval found for∑
q d

q
1 (t = 0, µ2). Results obtained by the two

other data-driven extractions highlighted.
But uncertainty here is driven by the
experimental uncertainty on the
subtraction constant. There is another
source of uncertainty.
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Extraction of GFFs

• Since the LO subtraction constant reads∫ 1

−1
dz

Dq(z , t, µ2)

1− z
= 2

∑
odd n

dq
n (t, µ2) (13)

if we allow dq
3 to be non-zero, at some scale µ2

0, we can have dq
1 (µ2

0) = −dq
3 (µ2

0), so a
vanishing subtraction constant, but non-zero GFF Cq(µ2

0). If the effect of evolution
is not significant enough, these configurations are not ruled out and add a considerable
uncertainty.
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Extraction of GFFs

• Exclusive preliminary result We reanalysed our work in a full NLO formalism [Dutrieux
et al, in preparation]. We tried different fitting scenarios and conclude that NLO effects
are generally rather small. A noticeable effect is obtained when allowing an intrinsic gluon
contribution not purely generated by evolution.

14 / 26



Deconvoluting a Compton form factor

3. Deconvoluting a Compton form factor: shadow GPDs
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Deconvoluting a Compton form factor

Position of the problem
Assuming a CFF has been extracted from experimental data with excellent precision – and the
different gluon and flavour contributions have been separated –, we are left with the
convolution: ∫ 1

−1

dx

ξ
T q

(
x

ξ
,
Q2

µ2
, αs(µ2)

)
Hq(x , ξ, t, µ2) = T q(Q2, µ2)⊗ Hq(µ2) (14)

where T q is a coefficient function computed in pQCD. Can we then ”de-convolute” eq.
(14) to recover Hq(x , ξ, t, µ2) from T q(Q2, µ2)⊗ Hq(µ2)?
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Deconvoluting a Compton form factor

• Question was raised 20 years ago. Evolution was proposed as a crucial element in
[Freund, 1999], but the question has remained essentially open.

• We show that GPDs exist which bring contributions to the LO and NLO CFF of only
subleading order even under evolution. We call them LO and NLO shadow GPDs.

Definition of an NLO shadow GPD

For a given scale µ2
0,

∀ξ,∀t,T q
NLO(Q2, µ2

0)⊗ Hq(µ2
0) = 0 and Hq(x , ξ = 0, t = 0, µ2

0) = 0 (15)

so for Q2 and µ2 close enough to µ2
0, T

q
NLO(Q2, µ2)⊗ Hq(µ2) = O(α2

s (µ2)) (16)

• Let Hq be an NLO shadow GPD, and Gq be any GPD. Then Gq and
Gq + Hq have the same forward limit, and the same NLO CFF up to
a numerically small and theoretically subleading contribution.
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Shadow GPDs at leading order

• Complete details in [Bertone et al, Phys.Rev.D 103 (2021) 11, 114019]

• We search for our shadow GPDs as simple double distributions (DD) F (β, α, µ2) to
respect polynomiality, with a zero D-term. Then, thanks to dispersion relations, we can
restrict ourselves to the imaginary part only Im T q(Q2, µ2

0)⊗ Hq(µ2
0) = 0.

• We search our DD as a polynomial of order N in (β, α), characterised by ∼ N2

coefficients cmn:
F (β, α, µ2

0) =
∑

m+n≤N
cmn α

mβn (17)
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Shadow GPDs at next-to-leading order

• First study beyond leading order: Apart from the LO part, the NLO CFF is composed
of a collinear part (compensating the α1

s term resulting from the convolution of the LO
coefficient function and the evoluted GPD) and a genuine 1-loop NLO part.

Hq(ξ,Q2) = Cq
0 ⊗ Hq(+)(µ2

0)+αs(µ2)Cq
1 ⊗ Hq(+)(µ2

0)+αs(µ2)Cq
coll ⊗ Hq(+)(µ2

0) log

(
µ2

Q2

)
(18)

An explicit calculation of each term for our polynomial double distribution gives that

Im T q
coll(Q

2, µ2)⊗ Hq(µ2) ∝

αs(µ2) log

(
µ2

Q2

)[(
3

2
+ log

(
1− ξ

2ξ

))
Im T q

LO ⊗ Hq(µ2) +
N+1∑
w=1

k
(coll)
w

(1 + ξ)w

]
(19)

and assuming Im T q
LO ⊗ Hq(µ2) = 0,

Im T q
1 (Q2, µ2)⊗ Hq(µ2) ∝ αs(µ2)

[
log

(
1− ξ

2ξ

)
Im T q

coll ⊗ Hq(µ2) +
N−1∑
w=1

k
(1)
w

(1 + ξ)w

]
(20)

filler

19 / 26



Shadow GPDs at next-to-leading order

• By linearity of both the CFF convolution and the evolution equation, we can evaluate
separately the contribution to the CFF of a quark shadow NLO GPD under evolution.

• We probe the prediction of evolution as O(α2
s (µ2)) with our previous NLO shadow GPD

on a lever-arm in Q2 of [1, 100] GeV2 (typical collider kinematics) using APFEL++ code.

• The fit by α2
s (µ2) is very good up to values of αs of

the order of its MS values. For larger values, large
logs and higher orders slightly change the picture.

• The numerical effect of evolution remains very
small. For a GPD of order 1, the NLO CFF is only
of order 10−5.
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Shadow GPDs at next-to-leading order

The orange and brown models are Goloskokov-Kroll model + NLO shadow GPDs. For ξ
close to 0 and x close to ξ, by design, they are very close, but vastly different otherwise. They
give rise to NLO CFFs which are exactly identical at this scale, and different by a negligible
amount for expected Q2 lever arm.

ξ = 0.1 (left) and ξ = 0.5 (right) 21 / 26



Perspectives

4. Perspectives
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Perspectives

• Modelling shadow GPDs allows to quantify the uncertainty involved in GPD extractions
from DVCS data. Ongoing effort to produce such models to propagate uncertainties
in GPD studies, especially taking into account positivity constraints. For x ≥ |ξ|∣∣∣∣Hq(x , ξ, t)− ξ2

1− ξ2
Eq(x , ξ, t)

∣∣∣∣ ≤
√

1

1− ξ2
f q
(
x + ξ

1 + ξ

)
f q
(
x − ξ
1− ξ

)
(21)

see talk by P. Sznajder on Wednesday 17:20 - Joint GPD - Future session.

• Other exclusive processes can be expressed in terms of GPDs. Close parent to DVCS is
time-like Compton scattering (TCS) [Berger et al, 2002]. Although its measurement
will reduce the uncertainty, especially on ReH [Jlab proposal PR12-12-001], and produce
a valuable check of the universality of the GPD formalism, the similar nature of its
convolution (see [Müller et al, 2012]) makes it subject to the same shadow GPDs.
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Perspectives

• Reducing uncertainties on CFFs itself is a very useful task. e.g. proton pressure
anisotropy is compatible with 0 largely because of the uncertainty on Re H in [Dutrieux
et al, Eur.Phys.J.C 81 (2021) 4, 300].
• The proposal to install a positron beam at JLab [Afanasev et al, 2019] can help on this

task. We have performed in [Dutrieux et al, Eur.Phys.J.A 57 (2021) 8, 250] a
reweighting of our neural network replicas of CFFs against simulated new experimental
points.
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Conclusion

• Explicit demonstration of NLO shadow GPDs of considerable size with a very small and
subleading contribution to CFFs. Such shadow GPDs will be hidden in typical
statistical and systematic uncertainties of DVCS. TCS or LO DVMP face similar
issues. We foresee that our discussion can be extended to higher order DVCS. Other
exclusive processes will help discriminate the DVCS shadow GPDs. Especially DDVCS or
Lattice QCD for instance should escape the dimensionality of data problem.

• Potential impact on hadron tomography due to the ξ → 0 extrapolation, determination
of OAM and mechanical properties to study.

• An extraction of GPDs with lesser systematic uncertainty requires a multi-channel
analysis, and the development of integrated analysis tools, like PARTONS

• More precise data over a much larger Q2 range promised by future colliders will be very
welcome here and for the extraction of mechanical properties as well.

• More theoretical constraints, like positivity could play a significant role
in reducing the uncertainty.
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Conclusion

Thank you for your attention !
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Shadow GPDs at leading order

• For our LO shadow GPD, we first want Hq(+)(ξ, ξ, µ2
0) = 0, so we notice that

Hq(+)(ξ, ξ, µ2
0) =

N+1∑
w=1

kw
(1 + ξ)w

where kw =
∑
u,v

Cuv
w quv , Cuv

w = (−1)u+v+w

(
v

u − w

)

Cancelling the LO CFF

Hq(+)(ξ, ξ, µ2
0) = 0 =⇒ (cmn)m,n ∈ ker(C .R) (22)

Cancelling the forward limit

Hq(+)(x , ξ = 0, µ2
0) = 0 =⇒ (cmn)m,n ∈ ker(Q.R) (23)
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Shadow GPDs at leading order

Cancelling the LO CFF

Hq(+)(ξ, ξ, µ2
0) = 0 =⇒ (cmn)m,n ∈ ker(C .R) (22)

• We then want Hq(+)(x , ξ = 0, µ2
0) = 0, so we notice that

Hq(+)(x , 0, µ2
0) =

N+1∑
w=0

qwx
w where qw =

∑
u,v

Quv
w quv , Quv

w = 2δvw

Cancelling the forward limit

Hq(+)(x , ξ = 0, µ2
0) = 0 =⇒ (cmn)m,n ∈ ker(Q.R) (23)
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Shadow GPDs at leading order

Cancelling the LO CFF

Hq(+)(ξ, ξ, µ2
0) = 0 =⇒ (cmn)m,n ∈ ker(C .R) (22)

Cancelling the forward limit

Hq(+)(x , ξ = 0, µ2
0) = 0 =⇒ (cmn)m,n ∈ ker(Q.R) (23)

• Both linear systems C .R and Q.R are systems of ∼ N equations for ∼ N2 variables, so
the number of solutions grows quadratically with N, order of the polynomial DD.

29 / 26



Shadow GPDs at leading order

Cancelling the LO CFF

Hq(+)(ξ, ξ, µ2
0) = 0 =⇒ (cmn)m,n ∈ ker(C .R) (22)

Cancelling the forward limit

Hq(+)(x , ξ = 0, µ2
0) = 0 =⇒ (cmn)m,n ∈ ker(Q.R) (23)

LO shadow GPDs

Here is an example of an infinite family of LO shadow DDs, each being of degree N ≥ 9 odd

FN(β,α,µ2
0)=βN−8

[
α8− 28

9
α6

(
N2−3N+20

(N+1)N
+β2

)
+ 10

3
α4

(
N2−7N+40

(N+1)N
+ 2(N2−3N+44)

3(N+1)N
β2+β4

)

− 4
3
α2

(
N2−11N+60

(N+1)N
−N−8

N
β2−N2−3N−28

(N+1)N
β4+β6

)
+ 1

9
(1−β2)2

(
N2−15N+80

(N+1)N
− 2(N−8)

N
β2+β4

)]
(24)
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Shadow GPDs at next-to-leading order

• Cancelling both terms gives rise to two additional systems with a linear number of
equations. The first NLO shadow GPD is found for N = 21, and adding the condition that
the DD vanishes at the edges of its support gives a first solution for N = 25 (see below).

Color plot of an NLO shadow GPD at initial scale 1 GeV2, and its evolution
for ξ = 0.5 up to 106 GeV2 via APFEL++ and PARTONS [Bertone].
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Perspectives

• Deeply virtual meson production (DVMP) [Collins et al, 1997] is also an important
source of knowledge on GPDs, with currently a larger lever arm in Q2. The process
involves form factors of the general form

F(ξ, t) =

∫ 1

0
du

∫ 1

−1

dx

ξ
φ(u)T

(
x

ξ
, u

)
F (x , ξ, t) (25)

with φ(u) is the leading-twist meson distribution amplitude (DA).

• At LO, the GPD and DA parts of the integral factorize and shadow GPDs cancel the form
factor.

• Situation at NLO remains to be clarified, it is foreseeable new shadow GPDs (dependent
on the DA) could be generated also for this process.
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Perspectives

• New experimental channels: more experimentally challenging processes offer a richer
access to GPDs thanks to more handles with kinematic variables.
• Double deeply virtual Compton scattering (DDVCS) – proposed at JLab with SOLID

(LOI12-15-005) and CLAS12 (LOI12-16-004) – which gives access directly to the (x , ξ) value
of GPDs in the ERBL region at LO.

• Multiparticle production: diphoton [Pedrak et al, 2017], photon-rho [Boussarie et al, 2017]

• Lattice QCD: low order Mellin moments of GPDs will not change significantly the
previously exposed picture. Where a new order of DVCS put N constraints on a DD of
polynomial order N, a new Mellin moment only brings a finite number of constraints.

• Extractions of the x-dependence of parton distributions are an interesting prospects,
which we start to consider.
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Perspectives

Positivity constraints [Radyushkin, 1999], [Pire et al, 1999], [Diehl et al, 2001], [Pobylitsa,
2002]

• Stemming from the representation of GPDs as overlap between light-front wave functions,
positivity constraints are a Cauchy-Schwart like inequality relating GPDs to the PDFs,
e.g. for x ≥ |ξ|∣∣∣∣Hq(x , ξ, t)− ξ2

1− ξ2
Eq(x , ξ, t)

∣∣∣∣ ≤
√

1

1− ξ2
f q
(
x + ξ

1 + ξ

)
f q
(
x − ξ
1− ξ

)
(26)

• This inequality puts a maximal bound on the size of shadow GPDs in the DGLAP region,
and is especially constraining for large x .

• Since shadow GPDs are maximally violating positivity (their forward limit is 0), they are a
tool to correct a model giving satisfactory experimental agreement, but violating
positivity. (Work in progress)
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