Differential cross sections and photon beam asymmetries of η photoproduction on the proton in LEPS2/BGOegg experiment

Toshikazu HASHIMOTO,

Norihito MURAMATSU^A,Nam TRAN,Yuji MATSUMURA,

Natsuki TOMIDA, Hajime SHIMIZU^A, , Masaru YOSOI,

Kyoichirou OZAWA^B, Takatsugu ISHIKAWA^A,

Masayuki NIIYAMA^c, Manabu MIYABE^A, Keigo MIZUTANI

and BGOegg collaboration

Osaka University RCNP,Tohoku University ELPH^A,KEK^B,Kyoto Sangyo University^C

- 1. Introduction
- 2. LEPS2/BGOegg experiment
- 3. Differential cross section and beam asymmetry
- 4. Summary

Physics Motivation

The ground-states baryon resonances have been explained well by the constituent quark model, but the excited states differ from CQM in mass.

⇒ The study of these resonances is very important for understanding hadron structure.

2021/10/21

SPIN 2021, Toshikazu HASHIMOTO

Physics Motivation												
Particle	J^P	overall	$N\gamma$	$N\pi$	$\Delta \pi$	$N\sigma$	$N\eta$	ΛK	ΣK	$N\rho$	$N\omega$	$N\eta\prime$
N	$1/2^{+}$	****										
N(1440)	$1/2^{+}$	****	****	****	****	***						
N(1520)	$3/2^{-}$	****	****	****	****	**	****					
N(1535)	$1/2^{-}$	****	****	****	***	*	****					
N(1650)	$1/2^{-}$	****	****	****	***	*	****	*				
N(1675)	$5/2^{-}$	****	****	****	****	***	*	*	*			
N(1680)	$5/2^{+}$	****	****	****	****	***	*	*	*			
N(1700)	$3/2^{-}$	***	**	***	***	*	*			*		
N(1710)	$1/2^{+}$	****	****	****	*		***	**	*	*	*	
N(1720)	$3/2^{+}$	****	****	****	***	*	*	****	*	*	*	
N(1860)	$5/2^{+}$	**	*	**		*	*					
N(1875)	$3/2^{-}$	***	**	**	*	**	*	*	*	*	*	
N(1880)	$1/2^{+}$	***	**	*	**	*	*	**	**		**	
N(1895)	$1/2^{-}$	****	****	*	*	*	****	**	**	*	*	****
N(1900)	$3/2^+$	****	****	**	**	*	*	**	**		*	**
N(1990)	$7/2^{+}$	**	**	**			*	*	*			
N(2000)	$5/2^{+}$	**	**	*	**	*	*				*	
N(2040)	$3/2^{+}$	*		*								
N(2060)	$5/2^{-}$	***	***	**	*	*	*	*	*	*	*	
N(2100)	$1/2^{+}$	***	**	***	**	**	*	*		*	*	**
N(2120)	$3/2^{-}$	***	***	**	**	**		**	*		*	*
N(2190)	$7/2^{-}$	****	****	****	****	**	*	**	*	*	*	
N(2220)	$9/2^{+}$	****	**	****			*	*	*			
N(2250)	$9/2^{-}$	****	**	****			*	*	*			
N(2300)	$1/2^{+}$	**		**								
N(2570)	$5/2^{-}$	**		**								
N(2600)	$11/2^{-}$	***		***								
N(2700)	$13/2^+$	**		**								

–Traditionally π -nucleon scattering has been studied well.

These resonances which don't couple to π are confirmed via meson photoproduction.

The feature of η mesons These isospin is 0, so only N* contribute. (π 's isospin is 1 \Rightarrow π couples to both N* and Δ *) η strongly couples to N* including $s\bar{s}$.

**** Existence is certain.

*** Existence is very likely.

** Evidence of existence is fair.

Evidence of existence is poor.

June 5, 2018 20:07

Physics Motivation

 The N*s with broad widths have overlapped each other at W>2 GeV. The photon beam asymmetry measurement is necessary in addition to the differential cross section to decompose the N*s using the interference of helicity amplitudes.

Photon beam asymmetry

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_0 \left\{1 - P_{\gamma}\Sigma \,\cos(2\phi)\right\}$$

- P_{γ} : incident photon polarization
- Σ : Beam Asymmetry
- ϕ : azimuthal orientation of reaction plane to beam polarization

- The differential cross section oscillates.
- This amplitude is $P_{\gamma} \Sigma$.
- A spin-dependent amplitude can be measured.
- **High** P_{γ} is necessary for precise study of Σ .
- ⇒ LEPS2 can provide highly polarized beam in high energy using the Backward Compton Scattering. This polarization degree is 40~90 %.

SPring-8/LEPS2 beamline

Backward compton scattering with 355nm UV laser and 8 GeV electron E_{γ} 1.3~2.4GeV beam intensity ~2Mcps beam polarization ~90% at maximum energy

2021/10/21

SPIN 2021, Toshikazu HASHIMOTO

We measure all particles in final state and use a kinematic fit.

- use 3-momentum for 2γ s and a proton, a beam energy and a z-vertex
- require 4-momentum conservation and meson mass
- magnitude of proton momentum is unmeasured

* If a proton goes most forward, a proton momentum is measured by RPC. The typical background is 5% after the kinematic fit with a 99 % CL cut.

The bump structure in backward angle region above 2 GeV is observed. BGOegg results are **consistent** with CLAS and ELSA in middle region, **NOT consistent** with ELSA and LEPS in backward region. There are **inconsistency with PWA results** in high energy and backward region.

η differential cross section

At high energies and backward narrow angles, there is enhance of differential cross section. $\Rightarrow \text{interference between u-channels and s-channels?} \\ \text{high spin resonance}(J \ge \frac{5}{2})? \\ \text{*Helicity is limited } |h| \le \frac{3}{2} \text{ in photon-proton reaction.} \\ \Rightarrow \text{Resonance helicity state is } |h| \le \frac{3}{2} \\ \text{\Rightarrow If a resonance with } J \ge \frac{5}{2} \text{ decays, } \eta \text{ goes most forward or backward.} \\ \end{cases}$

We obtained also the differential cross section π^0 of ω and using the same data set. \Rightarrow The bump structure in backward angle region is not observed.

⇒ The structure of η may relate to resonances with large $s\bar{s}$ components.

SPIN 2021, Toshikazu HASHIMOTO

η beam asymmetry

Lower energy region

Our results are consistent with CLAS and EtaMAID at these energies. The angle dependence drastically changed at W>1.9 GeV \Rightarrow The contributions of N(1720) $\frac{3}{2}^+$, N(1900) $\frac{3}{2}^+$, N(2070) $\frac{5}{2}^-$ etc are expected.

angle.

η multipole analysis

Both EtaMAID2018 and Bonn-Gatchina don't reproduce our results in high energy region.

At beam asymmetries, the difference between $L \leq 3$ and $L \leq 4$ is large.

⇒ L=4 resonances($N(2190)\frac{7}{2}^{-1}$ and $N(2250)\frac{9}{2}^{-1}$) may affect.

It is difficult to distinguish resonances from the interference b/w s- and uchannel.

Summary

- We measured **the differential cross section and photon beam asymmetry of** *η* photoproduction using a kinematic fit.
- Differential cross section
- η differential cross section differs from other experimental data and PWA model calculations.
- \Rightarrow High spin states' contribution is expected.
- The bump structure in backward angle region above 2 GeV can be seen.
- \Rightarrow The same kind of structure can **not** be seen in π^0 and ω photoproduction.
- Photon beam asymmetry
- We measured beam asymmetries of η above 2.1 GeV for the first time.
- At the highest energy region, beam asymmetries of η differs from PWA model calculations.
- \Rightarrow There is room to update PWA model parameters.

We plan to submit our results in a paper soon.