A new search for time-reversal symmetry-breaking in muon decays

Sohtaro Kanda / KEK IMSS / 2021.10.19

Baryon Asymmetry

One of the great mysteries in physics

 $\circ\,$ The imbalance in matter and anti-matter in the universe.

$$_{\odot}$$
 $\eta = \frac{n_b - n_{\bar{b}}}{n_{\gamma}} = 6.1 \times 10^{-10}$ (n_b: baryon density, n_{{\gamma}: photon density).

 $\circ\,$ Baryogenesis is necessary.

• B-L non-conservation, CP violation, non-equilibrium in the early universe.

Majorana Neutrinos

As an answer to the mystery

- Decay of v_R leads to B-L non-conservation (Leptogenesis).
- Small neutrino masses can be explained by seesaw mechanisms.
- $\circ\,$ Unification of the quarks and leptons can be realized.

Muon Decay Neutrino Interference

- If the neutrinos are Majorana particles, neutrinos from muon decay interfere in the presence of V+A interactions.
- The interference of diagrams (a) and (b) above with (A,B,C,D)=(L, L, R, R) and (R,R,L,L) leads to P-odd and T-odd contributions to muon decay.
- How can we observe this interference?

Muon Decay

Generalized Expression

$$\begin{aligned} \frac{d\Gamma}{d\mathbf{q}_{e}} &= \frac{m_{\mu}G_{\mathrm{F}}^{2}}{3(2\pi)^{4}} \bigg\{ N(e) \pm \frac{\left(\mathbf{q}_{e} \cdot \boldsymbol{\zeta}_{\mu}\right)}{E} P(e) \mp \frac{\left(\mathbf{q}_{e} \cdot \boldsymbol{\zeta}_{e}\right)}{E} Q(e) \\ &- \frac{\left(\mathbf{q}_{e} \times \boldsymbol{\zeta}_{\mu}\right) \cdot \left(\mathbf{q}_{e} \times \boldsymbol{\zeta}_{e}\right)}{|\mathbf{q}_{e}|^{2}} R(e) - \frac{\left(\mathbf{q}_{e} \cdot \boldsymbol{\zeta}_{\mu}\right) \left(\mathbf{q}_{e} \cdot \boldsymbol{\zeta}_{e}\right)}{|\mathbf{q}_{e}|^{2}} S(e) \\ &+ \frac{\boldsymbol{\zeta}_{\mu} \cdot \left(\mathbf{q}_{e} \times \boldsymbol{\zeta}_{e}\right)}{E} T(e) \bigg\}. \quad (\text{E: energy, q: momentum, }\boldsymbol{\zeta}: \text{spin}) \end{aligned}$$

- N, S, R : Parity-even.
- P, Q: Parity-odd.
- $\circ\,$ T: P-odd and T-odd. This comes from the neutrino interference.
- The T-term indicates time-reversal symmetry-breaking in muon decays.

Measurement Principle

Transverse polarization of decay positrons

- The T-term $\zeta_{\mu} \cdot (q_e \times \zeta_e) T(e)/E$ can be observed only if the transverse polarization of e⁺ from μ^+ decay is non-zero.
- \circ A non-zero P_{T2} leads to the CP violation.
- $\circ~$ We can search for P_{T2} by positron polarimetry.

Positron Polarimetry

Bhabha scattering and annihilation-in-flight

- A positron polarimeter utilizes the spin-dependent cross-section of a particular electromagnetic process.
 - $\circ\,$ Mott scattering, Bhabha scattering, Compton transmission \cdots
- In the energy range of interest (50 MeV), Bhabha scattering (BHF) and annihilation-in-flight (AIF) are suitable.

Spin-dependent Cross-sections

and asymmetries of BHA and AIF

The difference cross-sections

 θ^* : scattering angle in center-of mass frame, \sqrt{s} : center-of-mass energy, ϕ : scattering azimuth

The longitudinal and transverse asymmetries

$$\mathsf{BHA} \begin{bmatrix} A_{\mathrm{L}} = \frac{(7 + \cos^2 \theta^*) \sin^2 \theta^*}{(3 + \cos^2 \theta^*)^2}, \\ A_{\mathrm{T}} = \frac{\sin^4 \theta^*}{(3 + \cos^2 \theta^*)^2}. \end{bmatrix} \mathsf{AIF} \begin{bmatrix} B_{\mathrm{L}}(\theta^*) = 1, \\ B_{\mathrm{T}}(\theta^*) = \frac{\sin^2 \theta^*}{1 + \cos^2 \theta^*}. \end{bmatrix}$$

Experiment at PSI

AIF measurement

\circ Continuous beam + μ SR technique

FIG. 1 (color online). Schematic view of the experimental setup. 0: Burst of polarized muons (angular frequency ω , polarization P_{μ}^{b}). 1: Be stop target and precession field **B**. 2: Two plastic scintillation counters selecting decay positrons. 3: Magnetized Vacoflux 50TM foil serving as polarization analyzer. 4: Array of 127 BGO scintillators to detect the two γ 's from e^+ annihilation-in-flight.

N. Danneberg et al., Phys. Rev. Lett. 94, 021802 (2005).

New Experimental Proposal

using a high-intensity pulsed muon beam at J-PARC

Pulsed beam + high-rate capable detectors

- Simultaneous measurements of Bhabha scattering and annihilation-in-flight (AIF).
- AIF events are selected with two photons in the calorimeter without a hit on the tracker.

Monte-Carlo Simulations

Angular asymmetries

• The analyzing power $A = (N_+ - N_-)/(N_+ + N_-)$ is calculated for each process.

- \circ AIF is good for a transverse polarimetry.
- Bhabha scattering is still useful for beam polarization monitoring.

Monte-Carlo Simulations

Energy thresholds and the target thickness

- Considering a threshold for for each gamma-ray energy (E1, E2).
- The energy thresholds are set $E_1 > 2$ MeV, $E_2 > 2$ MeV, $E_1 + E_2 > 15$ MeV.
- $\circ\,$ The target thickness is optimized to be 3 mm.

Monte-Carlo Simulations

Azimuth dependence of the asymmetry

- A simulated asymmetry in a case of $P_{\rm T2} = 7.7 \times 10^{-3}$, $\phi_1 = 45$ deg.
- $\circ\,$ The number of simulated muons is 3.3×10^9 (10 days at J-PARC MLF MUSE H-Line).

Statistical Sensitivity

Discovery potential of P_{T2}

Measurement days

 \circ The statistical significance of the transverse polarization:

$$\sigma \equiv \frac{P_{\mathrm{T2}}}{\delta P_{\mathrm{T2}}} = \frac{1}{\sqrt{(\delta a/a)^2 + (\delta \phi_1 \tan \phi_1)^2}}$$

Statistical Sensitivity

Sensitivity to the transverse polarization

- It is feasible to achieve a comparable statistical precision relative to that of the previous experiment within four days.
- A tenfold improvement will take close to a year.
 - \rightarrow Any ideas to improve the sensitivity more?

Electron Polarized Target

toward sophistication of the experiment

Experimental Schematic

using superconducting flux concentrator

- L-shell electrons of solid lithium are polarized by using a dipole magnet with a flux concentrator consisting of YBCO superconducting thin films.
- The superconducting
 thin films also work as a
 magnetic shield to
 prevent positron bends.
- The temperature and magnetic field are 1.5 K and 3 T, respectively.

*cryogenics is not shown

Collaborators

of the project

Sohtaro Kanda,¹ Takeshi Fukuyama,² Masataka Iinuma,³ Hideki Kohri,² Daisuke Nomura,⁴ Toru Ogitsu,⁵ Ken'ichi Sasaki,⁵ Koichiro Shimomura,¹ and Junji Tojo⁶ ¹Institute of Materials Structure Science, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan ²Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan ³Graduate School of advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan ⁴Department of Radiological Sciences, International University of Health and Welfare. 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501 ⁵Cryogenics Science Center, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan ⁶Faculty of Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan

- The proposal: arXiv:1908.01630 [hep-ex].
- A new proposal using YBCO superconducting thin films:
 - $\circ\,$ A letter is in preparation (and will be submitted soon).

Summary

and outlook

- T-violation in muon decay indicates the Majorana nature of neutrinos.
 - $\circ\,$ It appears as the transverse polarization of decay positrons.
- We have proposed a new experiment with the high-intensity pulsed muon beam at J-PARC.
 - The sensitivity and feasibility of the polarimeter have been studied.
- If the electron spin-polarized target is realized, the upper limit of the previous experiment can be updated significantly.
 - This scheme can be realized by using a superconducting thin film flux concentrator.
 - $\circ\,$ Feasibility study of electron polarization will be conducted.