

Measurement of longitudinal spin transfer of the $\Lambda(\Lambda)$ hyperon in polarized p+p collisions at $\sqrt{s} = 200 \text{ GeV}$ at RHIC-STAR

Yi Yu (于毅), for the STAR Collaboration Shandong University (山东大学)

Outline

- Motivation
- Introduction to RHIC and STAR
- Λ and $\overline{\Lambda}$ reconstruction
- Longitudinal spin transfer D_{LL} vs hyperon p_T
- Longitudinal spin transfer D_{LL} vs hyperon fragmentation z
- Summary

Yi Yu, SPIN2021

Motivation

Nucleon spin structure (from DIS and p-p) •

- Spin sum rule: $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_{q,g}$.
- Valence quark helicity distributions are well known.
- Poor knowledge on sea quarks, especially for strange quark.

Why choose Λ ?

- The spin of Λ is expected to be carried mostly by its constituent strange quark.
- The weak decay of Λ provides a way to measure its polarization.

 $dN \sim (1 + \alpha P_{\Lambda} \cos\theta^*) d\cos\theta^*$

 α : weak decay parameter of Λ

 P_{Λ} : the polarization of Λ

NNPDFpol1.1, Nucl. Phys. B887,276 (2014)

10⁻¹

10⁻¹

10⁻¹

Longitudinal spin transfer D_{II}

Definition of D_{LL} **in p+p collisions**

scenario 1: only s quark can produce polarized Λ in the fragmentation process. ΛD_{LL} can shed light on both **polarized fragmentation scenario 2:** u and d quarks have the same contribution to polarized Λ but functions (FF) and the helicity distributions of $s(\bar{s})$. with an opposite sign from s quark.

scenario 3: u, d and s quarks have the same contribution to the polarized Λ

Relativistic Heavy Ion Collider

- First and only polarized p+p collider in the world
- Collides both transversely and longitudinally polarized proton beams at $\sqrt{s} = 200$ and 500/510 GeV.
- Ideal for studying nucleon spin structure •

Dataset

Year	$\sqrt{s} (GeV)$	$L_{int}(pb^{-1})$	P _{beam}
2009	200	19	57% / 57%
2015	200	52	52% / 56%

The Solenoidal Tracker At RHIC

Time Projection Chamber (TPC)

- $|\eta| < 1.3$ and $0 \le \phi \le 2\pi$.
- Tracking and particle identification.

Electromagnetic Calorimeter (EMC)

- Barrel EMC (BEMC): $|\eta| < 1.0$ and $0 \le \phi \le 2\pi$.
- Endcap EMC (EEMC): $1.086 < \eta < 2.0$ and $0 \le \phi \le 2\pi$.
- Photon, π^0 , jet ...
- Serve as the trigger detectors.

Time of Flight detector (TOF)

- $|\eta| < 1.0$ and $0 \le \phi \le 2\pi$.
- Particle identification

Vertex Position Detector (VPD)

- $4.24 < |\eta| < 5.1$
- Determine the primary vertex position
- Monitor the relative luminosity

Select hard scattering events

 $\Lambda(\Lambda)$ hyperons selection dca length decay point cosrp is the cos value of the angle dca daughte primary vertex Select the hard scattering events using a jet trigger based on the energy deposits in the EMC Invariant mass of Λ $\begin{array}{c} \Lambda \to p + \pi^- \\ \bar{\Lambda} \to \bar{p} + \pi^+ \end{array}$ imA 3 reconstruction channel yields 40000 369551 Entries 1.118 Mean Std Dev 0.01153 35000 Mass_Window Apply a set of topological cuts to reduce the background. Side_Band 30000 — Fit Side-band method is used to estimate the residual background. 25000 $3.0 < p_T < 4.0$ Bkg 20000 Require hyperons to be associated with a jet with $\Delta R < 0.6$. 15000 Jets are reconstructed with anti- k_T algorithm (R = 0.6) using TPC tracks and 10000 EMC energy deposits. 5000 1.12 1.1 1.11 1.13 1.16 1.09 1.14 mass (GeV)

$\Lambda(\bar{\Lambda})$ reconstruction

• Jet
$$p_T > 5$$
 GeV and $-0.7 < \eta_{jet} < 0.9$

$$\Delta R = \sqrt{(\eta_{jet} - \eta_{\Lambda})^2 + (\phi_{jet} - \phi_{\Lambda})^2}$$

background subtraction

-r

r : background fraction

 η

Measurements of D_{II}

 \bullet D_{LL} is measured with the asymmetry of $\Lambda(\overline{\Lambda})$ yields in a small $cos\theta^*$ interval

first used in STAR, Phys. Rev. D 80, 111102 (2009).

- $N^{+(-)}$: the Λ yields with positive and negative beam helicity.
- R_L : relative luminosity measured by the VPD.
- $\alpha = 0.732$: decay parameter of Λ hyperon.
- P_{beam} : the beam polarization.

\bullet δ_{LL} of K_S^0 as a null check.

• Same method as D_{LL}

- Using an artificial decay parameter $\alpha = 1$

STAR, Phys. Rev. D 98, 032011 (2018).

ceptance canceled

Yi Yu, SPIN2021

Previous D_{II} results

\bullet D_{LL} vs p_T results with STAR 2009 data

STAR, *Phys. Rev. D* 98, 112009 (2018).

- Statistically limited
- In agreement with models

Theoretical models, when fit to data, provide constraints to strange quark and anti-quark polarization

(a) Longitudinal spin transfer to Λ .

(b) Longitudinal spin transfer to Λ .

New D_{LL} vs p_T results

 D_{LL} as a function of hyperon p_T , with small offset applied for better visibility

- The hyperon p_T range is extended up to 7 GeV/c.
- Results show consistency between Λ and $\overline{\Lambda}$.
- Data are in agreement with various models within uncertainties.
- Most precise measurements to date with twice the statistics of the 2009 dataset.

New D_{II} vs p_T results

 D_{LL} as a function of hyperon p_T , with small offset applied for better visibility

- \blacklozenge The hyperon p_T range is extended up to 7 GeV/c.
- \blacklozenge Results show consistency between Λ and Λ .
- Data are in agreement with various models within uncertainties.
- Most precise measurements to date with twice the statistics of the 2009 dataset.

Measurement of D_{II} vs z

Definition of *z*.

$$z = \frac{\overrightarrow{p}_{\Lambda} \cdot \overrightarrow{p}_{jet}}{\overrightarrow{p}_{jet} \cdot \overrightarrow{p}_{jet}}$$

z: longitudinal momentum fraction of the jet carried by $\Lambda(\bar{\Lambda})$ hyperon

 $rightarrow D_{LL}$ vs z can provide direct information for polarized fragmentation functions

 \clubsuit Correct the detector z to particle z

- 1. In STAR, jets are reconstructed using TPC tracks and EMC energy deposits.
- 2. Theoretical studies use all the particles for the jet. particle jet
- 3. Need to correct the "detector z" (based on detector jet) to "particle z" (based on particle jet) in our measurement.

Measurement of D_{II} vs z

- 1. Obtain the detector z and calculate the D_{LL} in each detector z bin
- 2. Correct the average of detector z to particle z
 - Monte Carlo sample: pythia6 + geant3
 - Correlate detector jet with particle jet
 - Get the mean value of particle z in each detector z bin

Yi Yu, SPIN2021

D_{LL} vs z results

• D_{LL} vs z results with STAR 2015 data

First measurements of D_{LL} vs z in polarized p+p collisions

♦ D_{LL} results directly probe the polarized fragmentation functions.

Summary

- The measurements of D_{LL} in polarized p+p collisions can provide insights into polarized fragmentation functions and also the helicity distributions for strange quarks.
- Longitudinally polarized p+p data taken in 2015 at 200 GeV at STAR provide about two times the statistics as compared to previous D_{LL} measurements.
- The new D_{LL} vs p_T results for $\Lambda(\bar{\Lambda})$ are consistent with previous measurements and also consistent with zero.
- The first measurement of D_{LL} vs z in p+p collision is reported, which can constrain the polarized fragmentation functions.

10-20 2021

Back up

Yi Yu, SPIN2021

systematic uncertainties

- Decay parameter α : 1.9% relative uncertainties
- Beam polarization: 3.0% relative uncertainties
- Relative luminosity: 0.00186 for all p_T and z bins (dominated at low p_T and z bins) •
- Background fraction: small contribution
- The trigger bias: dominated at high p_T and z bins

Yi Yu, SPIN2021