Studies of Neutral Current Neutrino-Nucleon Scattering with the MicroBooNE Detector

Lu Ren

On behalf of the MicroBooNE Collaboration

October 20th, 2021

Neutral-current Elastic Cross Section and Δs

- The strange quark contribution to the nucleon spin (Δs) is a long-standing unsolved problem
- A measurement of the neutrino-proton elastic scattering is valuable for determine the value of Δs
- Differential cross section of v + p elastic scattering

$$\frac{d\sigma}{dQ^2} = \frac{G_F^2}{2\pi} \frac{Q^2}{E_\nu^2} (A \pm BW + CW^2) \qquad A = \frac{1}{4} \left[(G_A^Z)^2 (1+\tau) - \left((F_1^Z)^2 - \tau (F_2^Z)^2 \right) (1-\tau) + 4\tau F_1^Z F_2^Z \right] \\ B = -\frac{1}{4} G_A^Z (F_1^Z + F_2^Z) \qquad C = \frac{1}{64\tau} \left[(G_A^Z)^2 + (F_1^Z)^2 + \tau (F_2^Z)^2 \right]$$

• At low Q^2 , it is dominated by axial form factor

$$\frac{d\sigma}{dQ^2}^{\nu p \to \nu p} (Q^2 \to 0) = \frac{G_F^2}{32\pi} \frac{M_p^2}{E_\nu^2} \left[\left(G_A^Z \right)^2 + \left(1 - 4\sin^2 \theta_W \right)^2 \right] \sim g_A^2 - 2g_A \Delta s + (\Delta s)^2$$

 $g_A = 1.2671$ is measured precisely from neutron beta decay

Previous Measurements in Neutrino Experiments

- Brookhaven E734 measured $vp \rightarrow vp$
 - Included interactions down to $Q^2 = 0.45 \text{ GeV}^2$
 - $\Delta s = -0.12 \pm 0.07$
- MiniBooNE measured $(vp \rightarrow vp)/(vN \rightarrow vN)$
 - Included interactions down to $Q^2 = 0.7 \text{ GeV}^2$
 - Found $\Delta s = 0.08 \pm 0.26$
- Re-analysis shows that uncertainty on Δ s of the E734 measurement is underestimated (Phys. Rev. C 48, 761)
- Measurement of v + p elastic scattering at lower Q^2 will make a more precise determination of Δs
 - Liquid argon time projection chamber (LArTPC) makes it possible

Previous Measurements in Neutrino Experiments

- Brookhaven E734 measured $vp \rightarrow vp$
 - Included interactions down to $Q^2 = 0.45 \text{ GeV}^2$
 - $\Delta s = -0.12 \pm 0.07$
- MiniBooNE measured $(vp \rightarrow vp)/(vN \rightarrow vN)$
 - Included interactions down to $Q^2 = 0.7 \text{ GeV}^2$
 - Found $\Delta s = 0.08 \pm 0.26$
- Re-analysis shows that uncertainty on Δ s of E734 measurement is underestimated (Phys. Rev. C 48, 761)
- Measurement of v + p elastic scattering at lower Q^2 will make a more precise determination of Δs
 - Liquid argon time projection chamber (LArTPC) makes it possible

LArTPC

Being used in current andnext-generation neutrinooscillation experiments

Scintillation light collected by the photomultiplier tubes (PMTs) behind the anode

• Low thresholds and high resolution

MicroBooNE

- 85 ton active mass, surface-based LArTPC
- 8192 wires with spacing of 3mm
- 32 PMTs collect light from flash at time of interaction
- Longest running LArTPC to date
 - Stable operation since 2015 Fall
 - Will shut down next week

- https://arxiv.org/abs/2110.00409
- More to come on Oct. 27th!

Booster Neutrino Beam (BNB)

- MicroBooNE is 470 m from the target
- BNB v_{μ} flux peaks at 0.7 GeV
- We have collected 1.56×10^{21} Protons On Target (POT)

ΡΟΤ

Neutral-current Elastic Scattering in MicroBooNE

- Neutral-current elastic (NCE) signal
 - a. Muon neutrino event
 - b. Interaction vertex within fiducial volume
 - c. One and only one proton (> 300 MeV/c) in the final state
 - d. According to truth information
 - NCE
 - Struck nucleon is proton
- Irreducible background
 - Satisfies a) b) c), but not d)

Neutrino Interactions in MicroBooNE

• Neutrino-argon interactions are generated using GENIE (Generates Events for Neutrino Interaction Experiments)

- The biggest challenge
 - After the reconstruction stage, each neutrino-induced event contains ~ 20 cosmic rays

$$\circ \quad Q^2 = 0.1 \text{ GeV}^2 \rightarrow \text{proton track} \sim 2 \text{ cm}$$

Event Selection

NM

- Only one contained track and no shower in an event
- Satisfy light-related requirements of neutrino-hypothesis
- Track angle with respect to the incident neutrino beam direction $\theta < 90^{\circ}$
- Deposited energy profile consistent with a proton
- Cosmic background further reduced by applying a boosted decision tree (BDT) cut
- Overall efficiency is 38%, overall purity is 23%

- Flux-averaged single-differential cross sections
 - Proton kinetic energy, Q^2 , proton momentum, proton angle
- Event rate is background-subtracted and unfolded to truth space using D'Agostini iterative unfolding

$$\begin{split} (\frac{d\sigma}{dx})_i &= \frac{S_i^{\text{unfolded}}}{\epsilon_i \cdot N_{\text{target}} \cdot \Phi_{\nu_{\mu}} \cdot (\Delta x)_i} \\ \epsilon_i &= \frac{N_i^{\text{selected}}}{N_i^{\text{generated}}} \end{split}$$

- Flux-averaged single-differential cross sections
 - Proton kinetic energy, Q^2 , proton momentum, proton angle
- Event rate is background-subtracted and unfolded to truth space using D'Agostini iterative unfolding

• Smearing matrix

$({d\sigma\over dx})_i =$	S_i^{unfolded}	
	$\overline{\epsilon_i \cdot N_{ ext{target}} \cdot \Phi_{ u_{\mu}} \cdot (\Delta x)_i}$	
ation	MicroBooNE Preliminary	

Systematic Uncertainty

- Main sources of systematic uncertainty
 - Neutrino-argon interaction modeling (GENIE)
 - Secondary re-interaction (G4)
 - Flux uncertainty
 - Detector simulation (Detsys)

Differential Cross Sections

- Preliminary NCE differential cross sections using 6.87×10^{20} POT data
- Future work
 - Improve the selection purity
 - Optimize the binning
 - Finalize the systematic uncertainty

Towards the Δs Measurement

- Shape of d_{\u037}/dQ² depends on the neutrino-argon interaction models
 - NCE model
 - $\blacksquare M_A = 0.96 \text{ GeV}$
 - $\Delta s = -0.12$
 - Will vary the model to find those parameters that describe data the best
- Measure the ratio of NCE to CCQE
 - Reduce systematic uncertainty from flux, detector effect and neutrino-argon interaction modeling

- First measured neutral current elastic scattering differential cross sections on argon using 6.87×10^{20} POT data
- The differential cross section $d\sigma/dQ^2$ goes as low as $Q^2 = 0.1 \text{ GeV}^2$, which is significantly lower than previous measurements from other neutrino experiments
- Work ongoing to finalize those differential cross sections and measure NCE/CCQE
- Stay tuned for our Δs results in the near future

Thank you!

ARGON

• Kinetic energy T

$$T = 31.3 \cdot L^{0.578}$$

• Four-momentum transfer squared

$$Q^2 = 2 * M_p * T$$

https://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html

Neutrino-Argon Interaction Modeling

- MicroBooNE GENIE tune
 - \circ Based on GENIE v3.00.06 with model set G18_10a_02_11a
 - More details on the models and systematic uncertainties: <u>HERE</u>
- Models that are related to the neutral-current events

Model	Parameter	Description
Nuclear model	-	Local Fermi Gas (LFG) model
Final State Interaction Model	- 2	Hadron-nucleus interaction model (hA2018)
NC Elastic model	$M_A = 0.96 \text{ GeV}$	Axial mass in Ahrens model
	$\eta = 0.12$	Strange quark contribution in Ahrens model
NC Resonance model	$M_A = 1.120 \text{ GeV}$	Axial mass of Berger-Sehgal model
	$M_V=0.840~{ m GeV}$	Vector mass of Berger-Sehgal model
NC Meson Exchange Current model	-	Empirical Dytman model

BDT Response

MM Lu Ren

Charged-current Measurements in MicroBooNE

Accumulated POT: 7.644e+18 **MicroBooNE** Preliminary Entries per bin v_u CC (signal): 71.9% 400È ν_μ CC (not μ): 2.6% v_e , $\overline{v_e}$ CC: 0.1% 350E $\overline{v_{\mu}}$ CC: 0.6% 300E NC: 2.5% **OUTEV: 3.5%** 250E Cosmic: 5.6% Dirt: 2.4% 200 Data (Beam-off): 10.8% 150E Data (Beam-on, stat. only 100 50 Data/(Ext+MC) 0.6 0.8 -0.8 -0.6 -0.4 -0.2 02 04 0 $\cos(\theta_{\mu}^{\text{reco}})$

CC pion-less:

https://microboone.fnal.gov/wp-content/uploads/MICRO BOONE-NOTE-1099-PUB.pdf

CC Inclusive:

https://microboone.fnal.gov/wp-content/uploads/MICRO BOONE-NOTE-1069-PUB.pdf