
Transverse spin sum rules

Xiangdong Ji University of Maryland

Spin2021: the 24th International Spin Symposium, Oct,2021

Outline

- Introduction: good and bad news about the longitudinal spin sum rules
- Transverse-spin sum rules
 - Twist-2 case: a unique simple partonic spin sum rule
 - Twist-3 case: a rotation of Jaffe-Manohar sum rule
- Conclusions

Ref: Ji, Zhao, and Yuan, What we know and what we don't know about the proton spin after 30 years

Nature Reviews Physics 3, 65 (2021)

Introduction: good news news about longitudinal spin sum rules

Longitudinal spin sum rules

• The first longitudinal spin sum rule in QCD was put forward by Jaffe and Manohar (1990)

 $\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + \ell_q^z + \ell_g^z$

- It is a sum rule in the infinite momentum frame $P^z = \infty$ or partonic sum rule.
- Good news: it involves "simplest" experimentally accessible quantities:
 - $\Delta\Sigma$: total quark helicity
 - ΔG : total gluon helicity

Progress in measuring ΔG

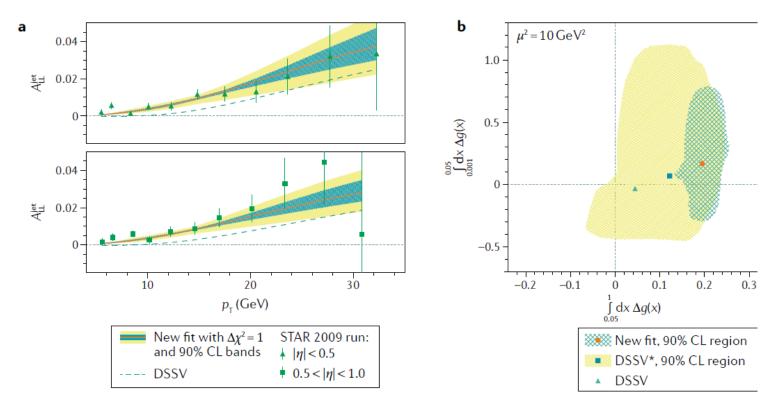


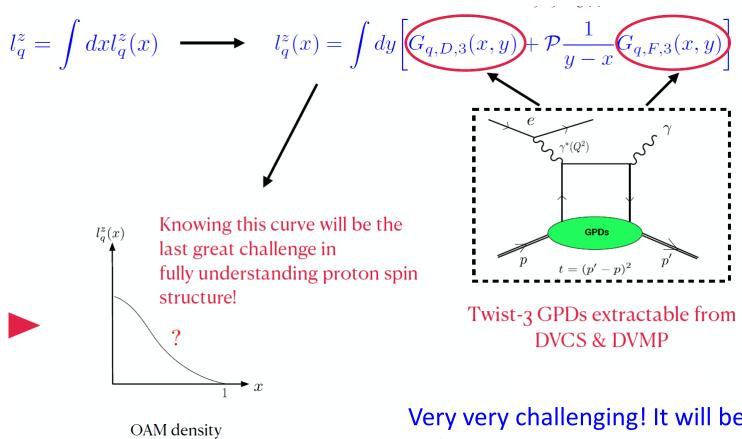
Fig. 2 | The Relativistic Heavy Ion Collider at Brookhaven National Laboratory provides strong evidence for the gluon helicity contribution to the proton spin. a | Double spin asymmetry A_{LL}^{jet} in inclusive jet production measured

Progress in understanding ΔG

- There is no gauge-invariant local axial vector corresponding to the gluon spin.
- There is a gauge-dependent candidate for ΔG

$$\vec{S}_g = \overrightarrow{E_a} \times \vec{A}_a$$

• In the infinite-momentum limit, the gaugedependent part of the above operator vanishes


X. Ji, J. Zhang & Y. Zhao Phys.Rev.Lett. 111 (2013)

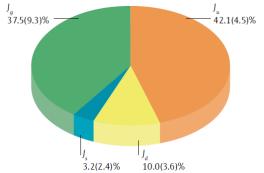
• This provides a recipe for lattice QCD calculation

Bad news about Jaffe-Manohar sum rules

- The helicity of the nucleon, ½, does not grow at the nucleon's momentum gets large. It stays as constant. Thus it is a twist-3 quantity.
- But it so happens that $\Delta \Sigma \& \Delta G$ are twist-2 quantities,
- OAM l_q and l_g are twist-3!
- The only way we know how to access them experimentally is through twist-three GPDs

Parton OAM & twist-3 GPD

Very very challenging! It will be a while before we learn how to measure twist-3 GPDs

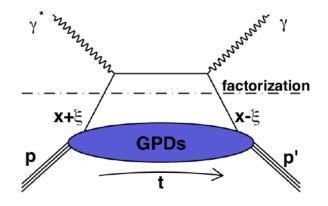

A frame-independent sum rule

 Frame-independent longitudinal spin sum rule (ji, 1996)

$$\frac{1}{2} = J_q + J_g = \frac{1}{2}\Delta\Sigma + L_q^z + J_g$$

- $J_q \& J_g$ are related to the EMT form factor $J_{q,g} = \frac{1}{2} [A_{q,g}(0) + B_{q,g}(0)]$
- They can be calculated using the standard lattice QCD approach

ETMC collaboration


Twist-2 GPD sum rule and DVCS etc

 GPDs were introduced to extract the form factors of EMT through the sum rules

$$\int_{-1}^{1} dx \ xH(x,\xi,t) = A(t) + \xi^{2} \ C(t) \ ,$$

$$\int_{-1}^{1} dx \ xE(x,\xi,t) = B(t) - \xi^{2} \ C(t) \ .$$

 To extract H & E from DVCS and similar processes modelindependently are somewhat challenging

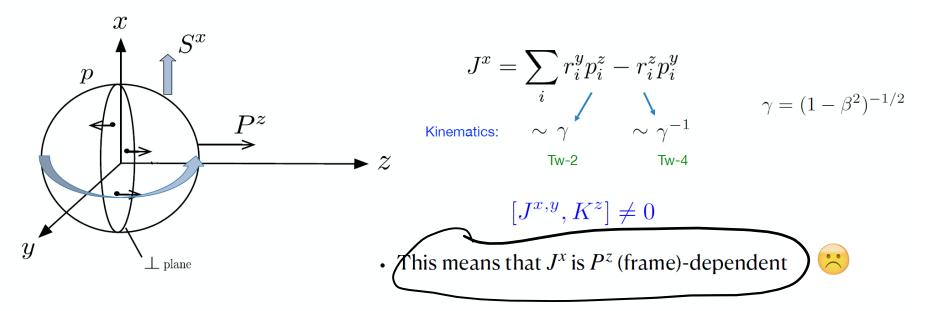
Problem with frame-indepedent sum rule

- It does not have simple parton interpretation when considered in IMF.
- Even though H and E come from twist-two operators, but in the longitudinal polarized state, its parton structure is complicated!
- Consider a twist-2 operator

 $\bar{\psi}\gamma^{(\mu_1}iD^{\mu_2}...iD^{\mu_n)}\psi$ (all μ arbitray)

Its matrix element has only simple partonic interpretation when all indices +.

Transverse spin sum rules: twist-2 case

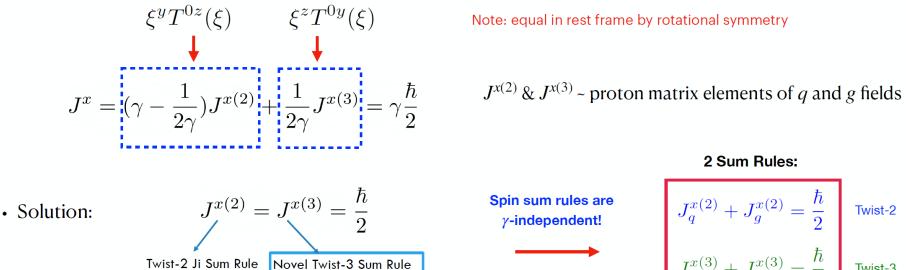

Transverse spin is a twist-2 quantity!

- Transverse AM grows with the external momentum of the hadron
- Consider the second order tensor $J^{\mu\nu} = (\vec{J}, \vec{K})$
- It transforms under Lorentz trans. Like $\left(\vec{B}, \vec{E}\right)$

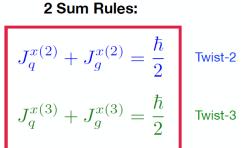
Under Lorentz trans., B_{\perp} increase by factor of γ , thus behave like a twist-2 quantity.

transverse spin:
$$\frac{\hbar}{2} \rightarrow \frac{\gamma \hbar}{2}$$

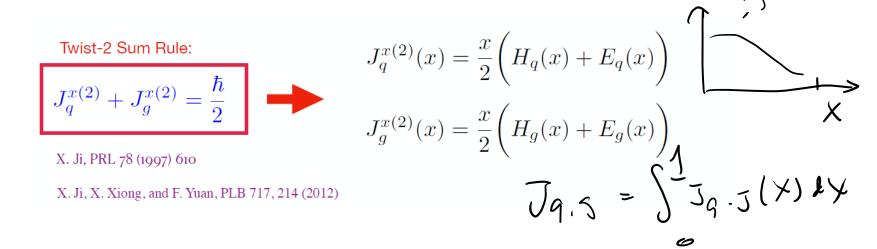
ji & Yuan *Phys.Lett.B* 810 (2020) 135786


Transversely Polarized Proton:

- Less studied than Longitudinal case because:
 - 1. It is frame-dependent with non-trivial boost properties
 - 2. A key issue is separating intrinsic contributions from CM ones
- This has led to some controversy in previous works


franc dependere Transverse Polarization Sum Rules:

• Let's look again at transverse AM, but **split in terms of its 2 contributions**:


Note: equal in rest frame by rotational symmetry

Simple parton sum rule for transverse spin

 Spin sum rule as an infinite momentum frame simple parton sum rule for transverse spin

Complete twist-2 partonic sum rule!

Transverse spin sum rules: twist-3 case

Twist-3 transverse spin sum rule

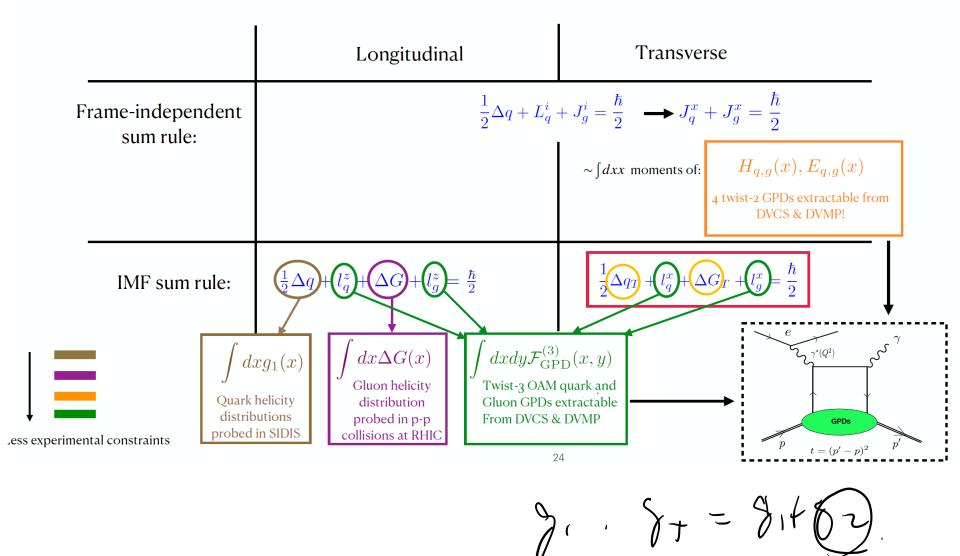
• Rotated version of the Jaffe Manohar Longitudinal spin sum rule

X. Ji, Y. Guo & K. Shiells, Nuc. Phys. B 969, 115440 (2021)		
Transverse Polarization:	$\frac{1}{2}\Delta q_T + \Delta G_T + l_q^{x(3)} + l_g^{x(3)} = \frac{\hbar}{2}$	
	$\Delta q_T \ , \ \Delta G_T$	Involve measurable PDFs in DIS and correspond to spin
	$l_q^{x(3)} , \ l_g^{x(3)}$	Involve twist-3 GPDs and correspond to canonical OAM

- Δq_T is related to g_2 structure function
- ΔG_T is a twist-three, spin-dependent gluon distribution
- Twist-3 OAM are a challenge to measure

g₂ structure function

- Can be measured with a transversely polarized target.
- Jlab 6 GeV, 12 GeV
- Moments have been calculated on lattice in the past
- X distribution can be calculated using large momentum effective theory (talks in the previous session)


ΔG_T : twist-3 gluon polarization

- When the target is transversely polarized, there is a twsit-3 gluon density.
- This mixes with g_2 in factorization formula.
- No experimental data.
- Can be calculated on lattice.

 $\langle P \rangle G_{(0)}^{+i} G^{+i} \rangle \langle P \rangle$

Experimental Roadmap for spin sums

Conclusion

- The simplest spin sum rule is twist-2 transverse spin sum rule
- For long. pol., Jaffe-Manohar sum rule is a twist-3 one.
- For long. Pol, the frame independent sum rule does not have a simple parton interpretation,
- There is a frame-rotated version of transverse spin sum rule which involves g_2 and ΔG_T
- All spin sum rules involve GPDs