

Measurement of Direct Photon Cross Section and Double Helicity Asymmetry at $\sqrt{s} = 510$ GeV in $\vec{p} + \vec{p}$ Collisions at PHENIX

Zhongling Ji for the PHENIX Collaboration

UCLA & Stony Brook University 24th International Spin Symposium

October 22, 2021

Probing the gluon spin inside the proton

*

■ The proton spin can be decomposed as

$$rac{1}{2} = rac{1}{2}\sum_{q}\Delta q + \Delta g + L_q + L_g$$

Gluon spin Δg is important for the proton spin puzzle.

$$\Delta \sigma^{\vec{p}\vec{p}} \sim \Delta g \otimes \Delta q \otimes \Delta \hat{\sigma}^{\vec{g}\vec{q}} \otimes D_{d}$$

- $\Delta \hat{\sigma}^{\vec{g}\vec{q}}$: from pQCD.
- Δq and D_h : from other measurements.
- Purpose: extract Δg by measuring $\Delta \sigma^{\vec{p}\vec{p}}$
- Observable: jet and hadron (larger statistics); direct photon ("clean" without hadronization).

$$A_{LL} = \frac{\Delta \sigma^{\vec{p}\vec{p}}}{\sigma^{pp}}$$

Direct photon as the "golden" channel

 $\blacksquare A_{LL} = \frac{\Delta\sigma}{\sigma} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}}$

■ Little fragmentation contributions. Challenges in the direct photon measurement:

Low statistics.

\blacksquare π^0 decay photon merging at high p_T in the EMCal detector.

Advantages at PHENIX with RHIC running period of year 2013:

- **The largest integrated luminosity (155 pb**⁻¹) in $\vec{p} + \vec{p}$
- EMCal with fine granularity to separate π^0 decay photons up to p_T of 12 GeV/c, and a shower profile analysis extends the γ/π^0 discrimination to beyond 20 GeV/c.

- "Golden" channel.
- Linear in Δg : probe the sign of gluon spin.

From A_{LL} **to** Δg

- Existing RHIC data mainly probe $0.05 < x_g < 0.2$
- PHENIX $\pi^0 A_{LL}$ at 510 GeV confirms a nonzero Δg and extend x_g to 0.01
- STAR jet data clearly imply a polarization of gluons in this range.
- This will be the first direct photon A_{LL} result to be published.
- Our results will add independent constraints on the Δg

PHENIX detector

- **P**seudorapidity $|\eta| < 0.35$
- Azimuthal angle ϕ : π radians coverage.
- Electromagnetic Calorimeter (EMCal):
 - primary detector for photons.
- EMCal trigger:
 - Select high energy photons.
- Drift Chamber (DC):
 - Measure charged particle momenta.
 - Charge veto criteria.

Direct photon signal extraction

Source of direct photon:

- $\blacksquare \quad \text{Compton scattering: } g + q \rightarrow \gamma + q$
- $\blacksquare \quad \text{Annihilation:} \ q + \bar{q} \rightarrow \gamma + g$
- Parton fragmentation to photon.
- Quark bremsstrahlung.
- Source of direct photon background:
 - **Decay photons from mesons** $(\pi^0, \eta, \omega, \eta')$.

Yield of direct photon:

- $\blacksquare N_{dir} = N_{total} (1+A)(1+R)N_{\pi^0}$
 - **•** R: π^0 one photon missing ratio.
 - A: Other hadrons' to π^0 's photon ratio.

Contamination of direct photon sample

Identifying direct photon through isolation

POWHEG + PYTHIA8 for xsec

■ NLO output (ME) of POWHEG as input (PS) of PYTHIA8. Overlapping between ME and PS is vetoed in PYTHIA8.

Multiparton interactions (MPI) in PYTHIA8:

$$rac{d\mathcal{P}_{\mathsf{MPI}}}{dp_{\perp}} = rac{1}{\sigma_{\mathsf{ND}}}rac{d\sigma_{2
ightarrow 2}}{dp_{\perp}}\exp\left(-\int_{p_{\perp}}^{p_{\perp i-1}}rac{1}{\sigma_{\mathsf{ND}}}rac{d\sigma_{2
ightarrow 2}}{dp'_{\perp}}dp'_{\perp}
ight)$$

 \blacksquare $\sigma_{\rm ND} \simeq \sigma_{\rm BBC}$ is the nondiffractive xsec.

Inclusive xsec at 510 GeV

■ NLO pQCD underestimates the data by a factor of ~3 at low p_T.

POWHEG + PYTHIY8 with MPI and parton shower gives better description of data.

Isolated xsec at 510 GeV

- Cross section consistent with NLO pQCD.
- MPI is important to explain the data/theory discrepancy at low *p*_T.
- Constrain unpolarized gluon density function.

Double helicity asymmetry A_{II}

Measured in a run-by-run basis Separated for 4 spin patterns Separated for even and odd crossings 4 spin patterns \times 2 crossings = 8 groups

Direct Photon Measurement

Direct photon A_{LL}

- Consistent with NLO DSSV14.
- Will be the first published direct photon A_{LL}
- **\blacksquare** Constrain polarized gluon density function Δg
- Much smaller uncertainty compared with the previous preliminary at 200 GeV.

Not published [Bennett, PhD thesis (2009)]

Summary

■ Gluon spin is important for proton spin decomposition.

- Direct photons have little fragmentation contributions.
- First direct photon xsec and A_{LL} at 510 GeV.

Independent constraint on the gluon spin contribution.

Backup

Previous inclusive xsec at 200 GeV

Cross section consistent with NLO pQCD.

NLO pQCD overestimates isolated/inclusive ratio.
 PHENIX, PRD 86, 072008 (2012).

PMC scale for isolated xsec

■ Running coupling from RGE:

$$\frac{d\alpha_s(\mu^2)}{d\ln\mu^2} = \beta(\alpha_s) = -b_0\alpha_s^2(\mu^2)$$

- PMC resums the renormalization effect by RGE.
- PMC scale shows better agreement with data.
- PMC scale has smaller uncertainty.
- PRD 86, 085026 (2012).

Systematic uncertainties of cross sections

Inclusive cross section

Isolated cross section

Zhongling Ji (UCLA & SBU)

Cross check between three EMCal subsystems (PbScW, PbScE, PbGI)

Inclusive cross section

Isolated cross sections

Zhongling Ji (UCLA & SBU)

$\pi^{\rm 0}$ and η missing ratios

π^0 decay photon separating rate

Two-photon separating rate

Merged-photon passing criteria rate

Other meson production rate at 200 and 510 GeV

Zhongling Ji (UCLA & SBU)

Other meson decay photon ratios

Particle	Production ratio	Branching ratio	γ ratio
$\frac{\eta}{\pi^0}$	0.5 ± 0.1	$rac{{ m Br}(\eta\! ightarrow\! 2\gamma \pi^+\pi^-\gamma)}{{ m Br}(\pi^0\! ightarrow\! 2\gamma)_{_{-}}}=rac{39.4\!+\!4.2/2}{98.8}$	0.21 ± 0.04
$\frac{\omega}{\pi^0}$	0.8 ± 0.3	$rac{{\mathsf B}{\mathsf r}(\omega o\pi^0\gamma)}{{\mathsf B}{\mathsf r}(\pi^0 o 2\gamma)}=rac{8.4/2}{98.8}$	0.034 ± 0.013
$\frac{\eta'}{\pi^0}$	0.2 ± 0.1	$\frac{\mathrm{Br}(\eta' \to \rho^0 \gamma \omega \gamma 2 \gamma)}{\mathrm{Br}(\pi^0 \to 2 \gamma)} = \frac{28.9/2 + 2.6/2 + 2.2}{98.8}$	0.036 ± 0.018
Sum	-	-	0.28 ± 0.05

Cross check between the 8 groups

8 colors for the 8 groups

Zhongling Ji (UCLA & SBU)

Bunch shuffling technique

The uncertainty of A_{LL}^{run} for each run from the error propagation:

$$\begin{aligned} \left(\Delta A_{LL}^{\text{run}}\right)^2 &= \left(\frac{1}{P_B P_Y} \frac{2RN_{++}N_{+-}}{(N_{++} + RN_{+-})^2}\right)^2 \left(\left(\frac{\Delta N_{++}}{N_{++}}\right)^2 + \left(\frac{\Delta N_{+-}}{N_{+-}}\right)^2 + \left(\frac{\Delta R}{R}\right)^2\right) \\ &+ \left(\left(\frac{\Delta P_B}{P_B}\right)^2 + \left(\frac{\Delta P_Y}{P_Y}\right)^2\right) (A_{LL}^{\text{run}})^2 \end{aligned}$$

■ Above assumptions: variables→independent; yields→Poisson distribution.

- Bunch shuffling: no assumptions about underlying statistical distributions.
- Procedures: randomize the spin pattern, calculate ΔA_{LL}^{run} by the error propagation, fit A_{LL}^{run} with a constant, get the fitting $\chi^2_{reduced}$, repeat 40,000 times, plot the $\chi^2_{reduced}$ distribution, compare with the theoretical $\chi^2_{reduced}$ distribution.
- Purposes: check unknown systematic uncertainties or overestimation of the statistical uncertainties.

Bunch shuffling results

A_L cross checks

Processes probing parton helicity densities

Reaction	Dom. partonic process	probes	LO Feynman diagram
$\vec{p}\vec{p} \rightarrow \pi + X$	$ec{g}ec{g} ightarrow gg$	Δg	ger a a a a a a a a a a a a a a a a a a a
	ec q ec g o q g		ð\$ €
$\vec{p}\vec{p} \rightarrow \text{jet}(s) + X$	$ec{g}ec{g} ightarrow gg \ ec{q}ec{g} ightarrow qg$	Δg	(as above)
$ \vec{p}\vec{p} \to \gamma + X \vec{p}\vec{p} \to \gamma + \text{jet} + X $	$egin{array}{c} ec{q}ec{g} ightarrow\gamma q \ ec{q}ec{g} ightarrow\gamma q \ ec{q}ec{g} ightarrow\gamma q \end{array}$	$egin{array}{c} \Delta g \ \Delta g \end{array}$	چـــر
$\vec{p}\vec{p} \rightarrow \gamma\gamma + X$	$ec q ec ec q ightarrow \gamma \gamma$	$\Delta q, \Delta \bar{q}$	
$\vec{p}\vec{p} \rightarrow DX, BX$	$ec{g}ec{g} ightarrow c ec{c}, b ec{b}$	Δg	Jasef

Jet and charged pion productions

Jet production

- \blacksquare π^{\pm} : separate u and d quark.
- **■** RHIC 200 GeV data probe 0.05 < x < 0.2
- **RHIC 510 GeV data probe** 0.02 < x < 0.08

Charged pion production

