

Recent Pion and Jet Spin Results at PH¾ENIX Ross Corliss (for the collaboration)

SPIN 2021 Matsue, Shimane Prefecture, Japan

October 22, 2021

Understanding Proton Spin PH* ENIX

- No Longer a Surprise: Valence quarks do not carry all the spin. More complex dynamics are at hand.
- Transverse -- how are proton spin and parton transverse momentum correlated?
- Longitudinal -- how do partons polarize wrt the proton

Longitudinal Asymmetries PH**ENIX

$$\Delta \sigma = \sum_{a,b} \Delta f_{a/A} \otimes \Delta f_{b/B} \otimes \Delta \sigma_{ab}$$

- Partonic asymmetries can be large
- Multiple initial states contribute to each final state observable
- Combine different final states to extract underlying pPDFs via global fit
- RHIC data ==> $\Delta g \neq 0$

Stony Brook University

arxiv:1406.5539 Nucl.Phys.B 887, 276 (2014)

Accessing Δg

- No free gluons in the final state -extract pPDFs via global fits of multiple observables
- Models predict how much each subprocess contributes to a particular final state
- Jets: Inclusive measurement, all initial states contribute
- Charged pions: More selective, some discrimination of initial state
- Some lever arm by changing collision energy: access lower Bjorken x at same p_T

Fractior

Subprocess

0.5

0.4

0.3

0.2

0.1

Probing Spin at RHIC

- World's only polarized p+p collider*
- Operational 2000 (yeic)
- STAR and PHENIX general-purpose detectors

* also $p^{\uparrow}He$, $p^{\uparrow}Al$, $p^{\uparrow}Au$,...

PHENIX Detector

- Took data until 2016 (==>sPHENIX)
- Wide variety of probes:
 - Central: π^0 , π^{\pm} , η , γ , jets, ...
 - Forward: π^0 , η , n, ...
- At mid rapidities ($|\eta| < 0.35$):
 - Charged particle tracks from Pad+ Drift chambers
 - pID from RICH (π^{\pm} >4.9GeV, e[±] > 20 GeV)
 - Energy and trigger with EMCal

Stony Brook University

Reconstructing Jets

- Select tracks with pT>0.5GeV, EMCal clusters with E>0.5GeV
- FastJet Anti-kT algorithm produces detector jets
- Control noise with cuts on measured jet pT, charge fraction, number of constituents
- Cut on jet axis $|\eta| < 0.15$ to minimize jet energy lost outside acceptance

JHEP 0804:063, 2008

Correcting Jet Energy

- True jet energy is distorted by
 - Missing energy (punch-through / acceptance)
 - Bin migration (resolution)
 - Trigger efficiency
 - Underyling event
- Pythia events generated and studied to produce response matrix.
- RooUnfold Bayesian unfolding procedure (2 iterations)

* Stony Brook University

R=0.3 Response Matrix (200 GeV p+p)

80 /)

PH³×ENIX Jet Cross Section @ 200

- After unfolding, jet cross section can be plotted with 'real' jet pT
- Results are systematically lower than NLO predictions (also seen at small R in CMS)
- suggests shape of NLO jets is narrower than in data
- Wider jet radius not practical for PHENIX acceptance

Stony Brook University

PH淡ENIX Jet Cross Section @ 510

• Similar trend at 510 GeV

- Asymmetry consistent with STAR result and theoretical prediction
- Main systematic effects from fidelity of detector simulation in unfolding studies
- Note: Statistical errors correlated by the unfolding

Jet ALL @ 510

Charged Pions

- Single particle signal reduces acceptance issues
- Pion production in jets *favors* sign that matches the hard-scatter quark
- Existing knowledge of Δu and Δd gives a lever arm to look at Δg

* Stony Brook University

Reconstructing Charged Pions^{PH}*ENIX

- Trigger on EMCal energy, candidate track must match to tower
- Challenge: ~50% of pions have significant EMCal punch-through
- Pion ID:
 - >1 PMT in RICH must fire (4.9- 17.3GeV) fires only for pions and electrons)
 - 0.2<E/p<0.8 -- punchthrough to disfavor electrons
 - Require bad match to EM shower shape
- Remaining BG studied in PYTHIA+GEANT

Pion Background Studies PH**ENIX

- MC studies show electrons dominate:
 - below threshold and until kaons can fire the RICH lacksquare
 - at high E/p (EM shower fully captured)
 - at low E/p (late conversion)

Stony Brook University

PH[%]ENIX Charged Pion ALL @ 510

- Background asymmetry consistent with zero, fraction also small
- Consistent with DSSV fits of 200 GeV data: positive gluon polarization
- Complementary xT range, corresponds to $0.04 \le x_B \le 0.09$

Stony Brook University

π[±] **A**_{LL} @ 510

Pions Going Forward

- qg subprocess increasingly dominates at forward angles and larger energies
- PHENIX Muon Piston Calorimeter covers 3.1<η<3.9(3.7) North(South)
- Most likely: high-x valence quark, low-x gluon ==> ΔG down to x~0.001
- Analysis of $\sqrt{s}=510$ GeV (Run13) data in progress

Stony Brook University

- PHENIX jet and $\pi^{\pm}A_{LL}$ measurements at 510 GeV further corroborate $\Delta G > 0$
- Analysis ongoing in other channels as well
- Now: Transition to sPHENIX
- Soon(ish): EIC, and significantly improved access to small x

Summary and Outlook

0.08

0.06

0.04

0.02

-0.02

-0.04

-0.06

-0.08

NLO Jets at CMS

EIC projections

RHIC Runs

Year

•	Large datasets available in longitudinal and transverse polarizations	2006
•	Run 13: Iong 510GeV run	2009 2011
•	Run 15: first p [†] on nuclei	2012 2013
	(Heavy Ion not shown)	2015
		2015

2015 2015

r	√s (GeV)	Recorded Luminosity for longitudinally / transverse	Recorded Luminosity for longitudinally / transverse	<p> in %</p>		
	(00)	polarized p+p STAR	polarized p+p PHENIX			
6	62.4 200	pb ⁻¹ / 0.2 pb ⁻¹ 6.8 pb ⁻¹ / 8.5 pb ⁻¹	0.08 pb ⁻¹ / 0.02 pb ⁻¹ 7.5 pb ⁻¹ / 2.7 pb ⁻¹	48 57		
8	200	pb ⁻¹ / 7.8 pb ⁻¹	pb ⁻¹ / 5.2 pb ⁻¹	45		
9	200 500	25 pb ⁻¹ / pb ⁻¹ 10 pb ⁻¹ / pb ⁻¹	16 pb ⁻¹ / pb ⁻¹ 14 pb ⁻¹ / pb ⁻¹	55 39		
1	500	12 pb ⁻¹ / 25 pb ⁻¹	18 pb ⁻¹ / pb ⁻¹	48		
2	200 510	pb ⁻¹ / 22 pb ⁻¹ 82 pb ⁻¹ / pb ⁻¹	pb ⁻¹ / 9.7 pb ⁻¹ 32 pb ⁻¹ / pb ⁻¹	61/56 50/53		
3	510	300 pb ⁻¹ / pb ⁻¹	155 pb ⁻¹ / pb ⁻¹	51/52		
5	200	52 pb ⁻¹ / 52 pb ⁻¹	pb ⁻¹ / 60 pb ⁻¹	53/57		
5 (200 p A	u) total delivered Lui	total delivered Luminosity = 1.27 pb^{-1}			
5 (200 p A	total delivered Lui	total delivered Luminosity = 3.97 pb^{-1}			
	= Transversely polarized					

RHIC Ring

