

THE STRING+³P₀ MODEL OF HADRONIZATION

Xavier Artru

*I*nstitut de *P*hysique des *2 I*nfinis de Lyon Université de Lyon and CNRS (France)

In collaboration with Albi kerbizi and Anna Martin

GOALS (reached)

- Include the spin degree of freedom in the String Fragmentation Model and implement it in a Monte Carlo code for polarized quark jets. It can serve as a guide in quark polarimetry [X.A. and Z. Belghobsi 2013]
- Quantize the ³P₀ mechanism of quark pair creation in the string breaking.
- Generate *pseudo-scalar* mesons and *polarized vector* mesons.
- Generate the anisotropic decays of the VM.
- Respect the so-called "Left-Right" symmetry

[works by X.A. and Z. Belghobsi, Dubna-spin'11 and '13]

(I prefer : "symmetry of

Quark Line Reversal")

METHODS

- The String Fragmentation Model is reformulated as a *multiperipheral model* ^[*], but with *quark exchanges* instead of meson exchanges.
- Quark spinors are reduced to Pauli spinors (α_z = +1 subspace) Quark polarization ↔ density matrix ρ(q) = ½ (1+ σ.S_q);
- The basic objects are quark propagators Δ(k) and quark-hadron vertices Γ(k',p,k), which are 2×2 matrices.
- Splitting amplitude of the recursive process $q \rightarrow h + q'$: $T(p,k) = \Delta(k') \Gamma(k',p,k)$

Splitting *function* : $F(p,k) = trace \{T \rho(q) T^{\dagger}\}$

• The fact that we start with *amplitudes*, instead of probabilities guaranties the quantum properties of **positivity** and **entanglement**.

Associated multiperipheral model with quark exchanges

- viewed as a *recursive quark cascade* [Lund, Bowler]
- LR symmetry is a non-trivial constraint (not satisfied by Feynman-Fields)

The ${}^{3}P_{0}$ mechanism. 1) classical approach

 \rightarrow Local Compensation of Transverse Momentum

 \rightarrow azimuthal correlation between k_T and s_q = source of Collins effect. [Similarity with model by Matevosyan, Kotzinian and Thomas (2017)]

Iteration of ${}^{3}P_{0}$ Case with only *pseudoscalar* mesons (π , K, η^{0})

- quark spins are correlated two-by-two
 - \rightarrow propagates the spin information along the quark chain (with some loss)
- Collins effects are alternate in rank
- large positive Collins effect for the *unfavored* meson
- large dihadron asymmetry or Relative Collins Effect

OK with experiment

> This description is classical ! Let us look for a quantum one

X. Artru, IP2I Lyon

Quantum approach : the multiperipheral model

³P₀ wave function : $\langle \mathbf{S}_{\mathbf{q}}, \mathbf{S}_{\mathbf{\bar{q}}} | {}^{3}\mathbf{P}_{0} \rangle = \chi^{\dagger}(-\mathbf{S}_{\mathbf{q}}) \sigma_{z} \sigma_{z} \kappa_{\chi}(\mathbf{S}_{\mathbf{\bar{q}}})$

During tunneling k_z is not fixed, but imaginary: $k_z \sim i (m_q^2 + k_T^2)^{\frac{1}{2}}$. We replace it by a phenomenological *complex mass parameter* μ , with $Im(\mu) > 0$

 $\rightarrow \text{ The spin propagator is } \sigma_z \, \boldsymbol{\sigma}. \boldsymbol{k} = \begin{bmatrix} \boldsymbol{\mu} + \boldsymbol{\sigma}_z \, \boldsymbol{\sigma}. \boldsymbol{k}_T \end{bmatrix} \quad \text{(analog}$ X. Artru, IP2I Lyon [X.A. D

(analogue of m+γ.p) [X.A. Dubna-Spin'09]

Correlation implemented by $\Gamma^{(\text{spin})}(\text{PS}) = \sigma_{7}$

analogue of γ_5

The vertex. 2) vector meson (ρ , ω , ϕ)

• it depends on the vector amplitude **V** of the VM.

The simplest one which satisfy Parity and LR symmetry is

$$\mathbf{\Gamma}^{(\text{spin})}(\text{VM}) = \mathbf{G}_{\text{L}} \mathbf{V}_{z}^{*} + \mathbf{G}_{\text{T}} \mathbf{V}_{\text{T}}^{*} \cdot \boldsymbol{\sigma}_{\text{T}} \boldsymbol{\sigma}_{z}$$

(analogues of $\gamma_{\mu}\,V^{\mu}$ and $\sigma_{\mu\nu}\,V^{\mu}\,p^{\nu}$ couplings)

 G_L and G_T can be complex. New relevant parameters are :

- $|G_L|^2 + 2 |G_T|^2 \rightarrow abundance of vector mesons$
- $|G_L/G_T|^2 \rightarrow alignment$
- Arg(G_L/G_T) \rightarrow oblique polarization of the VM source of z-ordered di-hadron S_T asymmetry π slow $p^{-rnesor}$

π fast

Z

Same $\langle \mathbf{p}_T^2 \rangle$ and Collins asymmetry as pseudoscalars (any rank)

The full splitting amplitude

[A. Kerbizi, X.A., A. Martin, arXiv:2109.06124]

Splitting function and polarization of q'

• Splitting function for the process $q \rightarrow h + q'$:

 $F(Z, \mathbf{p}_T) = trace \{T \rho(q) T^{\dagger}\}$

• For a vector meson $\mathbf{T} = \mathbf{T}_{\alpha} V_{\alpha}$ ($\alpha = x, y, \text{ or } z$)

If the VM polarization is not analysed : $F(Z, \mathbf{p}_T) = \sum_{\alpha} trace \{\mathbf{T}_{\alpha} \rho(q) \mathbf{T}_{\alpha}^{\dagger}\}$

• The spin density matrix of q' is

 $\rho(q') = \begin{cases} T \rho(q) T^{\dagger} / \text{trace} \{T \rho(q) T^{\dagger}\} & \text{if } h = \text{pseudo-scalar meson} \\ T_{\alpha} \rho(q) T_{\alpha}^{\dagger} / \text{trace} \{T_{\beta} \rho(q) T_{\beta}^{\dagger}\} & \text{if } h = \text{not analysed VM} \end{cases}$

q' is polarized both by *spin transfer* from q and by $\mathbf{k'}_{T}$ - $\mathbf{s}_{q'}$ correlations.

 If the VM is *analysed* we need to calculate ρ(q') in an other way. This is the case when the momenta of the decay products are known (second slide below)

Polarization and decay of the vector meson

• The VM is polarized with the density matrix $\rho_{\alpha\beta}(h) = \text{trace}\{ \mathbf{T}_{\alpha} \rho(q) \mathbf{T}^{\dagger}_{\beta} \}$ (recall : $\mathbf{T} = \mathbf{T}_{\alpha} V_{\alpha}$)

(summation over the spin of q')

→ Its decay is **anisotropic**. Let **r** be the relative momentum of the decay products and $\langle \mathbf{r} | \mathbf{M} | \alpha \rangle$ the decay amplitude. The angular distribution of **r** is

 $\langle \boldsymbol{r}|\boldsymbol{M}|\boldsymbol{\alpha}\rangle~\rho_{\boldsymbol{\alpha}\boldsymbol{\beta}}(\boldsymbol{h})~\langle\boldsymbol{\beta}|\boldsymbol{M}^{\dagger}|\boldsymbol{r}\rangle$

• Choice of frame : **r** is measured in the VM rest frame. But the VM can be put at rest by different Lorentz transformations, hence different "frames" (*helicity frame*, *Jackson frame*, etc), which differ by Wigner rotations.

LR symmetry imposes the composition of two boosts :

Polarization of the left-over quark q' following a VM decay

- the spins of the VM and of q' are *entangled*.
- \rightarrow The polarization of q' depends on the directions of the decay products
- → In the Monte Carlo code, we cannot treat separately the decay of the VM and the fragmentation of q'.

We must use the *algorithm of Collins and Knowles* (1988) :

1) calculate $\rho_{\alpha\beta}(h) = \text{trace}\{ \mathbf{T}_{\alpha} \rho(q) \mathbf{T}^{\dagger}_{\beta} \}$ 2) generate the relative momentum **r** the decay products with the angular distribution $\langle \mathbf{r}|\mathbf{M}|\alpha\rangle \rho_{\alpha\beta}(h) \langle \beta|\mathbf{M}^{\dagger}|\mathbf{r}\rangle$ 3) calculate the *decay matrix* $D_{\beta\alpha}(h) = \langle \beta|\mathbf{M}^{\dagger}|\mathbf{r}\rangle \langle \mathbf{r}|\mathbf{M}|\alpha\rangle$ 4) deduce $\rho(q') = D_{\beta\alpha}(h) \mathbf{T}_{\alpha} \rho(q) \mathbf{T}^{\dagger}_{\beta}$ Flow of the spin information during and after VM emission and decay

D_{βα} carries the information about the direction of **r** "backward in time", from the decay event to the splitting event (in violation of classical causality)

Main conclusions

• We extended the Lund model of string fragmentation by including the spin degree of freedom, respecting the rules of quantum mechanics.

• The ${}^{3}P_{0}$ mechanism, in agreement with experimental Collins asymmetry, is implemented by the factor $\mu + \sigma_{z} \sigma . k_{T}$ of the quark propagator.

• Vector mesons have been included. They have opposite Collins effect w.r.t. pions, in accordance with Czyzewski's prediction, and smaller $\langle \mathbf{p}_T^2 \rangle$ (this is a "hidden spin" effect).

• A complex value of the parameter G_L/G_T leads to an *oblique* polarization of the vector mesons, resulting in a dihadron spin asymmetry.

• In a Monte Carlo code, the anisotropic decay of a polarized VM must be generated **before** continuing the recursive quark fragmentation (Collins and Knowles algorithm). Due to a quantum entanglement, the polarization of the leftover quark depends on the directions of the decay products.

• The translation of this model in a Monte Carlo code and the comparison with experimental data is presented by Albi Kerbizi in the next talk.

Thank you for your patience !!!