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MOTIVATION

@ 3D structures of proton were studied typically using
e semi-inclusive hadron production
[Mulders, Tangerman (1996), Brodsky, Hwang, Schmidt (2002),
Bacchetta et al.(2007)]
e jet production/hadron in jet
[Kang, Metz, Qiu, Zhou (2011), Liu, Ringer, Vodelsang, Yuan (2019),
Kang, Lee, Shao, Zhao (2021)]
@ Jet was thought to be able to probe only a subset of TMD
PDFs (4 out of 8 at leading twist).
@ This work: Investigate possibility of probing all TMD PDFs
with jet.
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INCLUSIVE JET PRODUCTION IN DIS

Jets at EIC

Consider I + p(P,S) = 1"+ J(Py) + X @ A lot of statistics at small pr in the
forward region.

RapaT

@ Focus on the region
Aqep ~ [Py < Q.
This is unlike LHC, for which only
jets with [Py | > Aqcp are of
interest.

This is like SIDIS, but replace a hadron @ Still get jets i we use jet algorithms

by a.Jet. ) ] . that involve energy (i.e.
[Gutierrez-Reyes, Scimemi, Waalewijn, spherically-invariant jet algorithm
Zoppi (2018)] [Cacciari, Salam, Soyez (2012)]) instead of

kr. Low pr (~ Aqcp) and low Q2
(~ 10 — 100 GeV?) is not a problem.
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FACTORIZATION

@ Factorization from SCET: 6 = H Q@ P ® J

, ®: TMD PDFs, 7: TMD jet functions (JFs)

[Gutierrez-Reyes, Scimemi, Waalewijn, Zoppi (2018)]
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@ TMD PDFs and TMD JFs encoded in azimuthal asymmetries
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TMD PDFS AT LEADING TWIST
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hadron quark unpolarized | chiral transverse
U f1 h% (Boer-Mulders)
L gir hlLL
T fll (Sivers) aqirT th., hllT (transversity)

@ 8 TMD PDFs at leading twist, functions of x and p2
@ T-even: fi,q1L, 11, har, hit, hir
T-odd: fiy, hi
@ 3 functions fi1, g1, h1i7 survive after pr integration giving collinear PDF
@ Chiral-even TMD PDFs accessible by traditional jet function:
fi, oL, i, fir
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T-0DD JET FUNCTION

@ Traditionally, only jets with high pr (> Aqcp) were of interest.
Production of high-pr jets is perturbative. Since massless perturbative
QCD is chiral-symmetric, only T-even jet functions appear.

@ At low pr (~ Agcp), the jet is sensitive to nonperturbative physics. In
particular, spontaneous chiral symmetry breaking leads to a nonzero
T-odd jet function when the jet axis is different from the direction of the
fragmenting parton. (This is similar to Collins effect in fragmentation
functions of hadrons J)

Frit
2

recoiled hadrons

j(Z,k'T) = jl (Z7 kJT)% + Z"7'1‘(Z., ]\“/1‘)

@ J1: T-even, traditional jet function

@ Jr: T-odd, encodes correlations of quark
transverse spin with quark transverse momentum
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ADVANTAGES OF T-ODD JET FUNCTION

e Universality
Like the T-even 71, T-odd J7r is process independent.
o Flexibility
Flexibility of choosing jet recombination scheme and hence the jet axis
= Adjust sensitivity to different nonperturbative contributions
= Provide opportunity to “film” the QCD nonperturbative dynamics, if one
continuously change the axis from one to another.
e High predictive power
@ Perturbative predictability. Since a jet contains many hadrons, the jet
function has more perturbatively calculable degrees of freedom than the
fragmentation function. For instance, in the WTA scheme, the
z-dependence in the jet function is completely determined:

2
T (2, kr, R) = 8(1 — 2)J(kr) + O (13’;)
[Gutierrez-Reyes, Scimemi, Waalewijn, Zoppi (2018)]

@ Nonperturbative predictability. Similar to the study in [Becher, Bell
(2014)], Jr can be factorized into a product of a perturbative coefficient
and a nonperturbative factor. The nonperturbative factor has an operator
definition [Vladimirov (2020)], and as a vacuum matrix element can be
calculated on the lattice. This is unlike the TMD fragmentation function,
which is an operator element of |h + X).
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AZIMUTHAL ASYMMETRY

sin(¢ y + ¢) azimuthal asymmetry:

sin(¢g+dbs)
ASin(@gtes) _ Fop 7"
ogs

Fyu

o F[SJ‘;(¢J+¢'S) ~ h1 ® Jrp, probes transversity

We simulate using Pythia 8.2+StringSpinner [Kerbizi, Loennblad (2021], with jet charge [Kang, Liu,
Mantry, Shao (2020)] measured to enhance flavor separation (not mandatory), with EIC kinematics.
Use the spherically-invariant jet algorithm [Cacciari, Salam, Soyez (2012)]
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@ Change the jet axis from one to another (WTA — E-scheme), “film” nonperturbative physics.
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ete” ANNIHILATION

We demonstrate prediction on azimuthal asymmetry in back-to-back dijet

production in eTe™ annihilation at Vs = /110 GeV, with WTA scheme and
parametrized nonperturbative Sudakov for Jr:
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SUMMARY AND OUTLOOK

e We introduce the T-odd jet function, which is relevant for
low pr jets, i.e. jets at EIC.

e Using T-odd jet function, together with the traditional
T-even one, we can probe all 8 TMD PDFs at leading
twist using jets.

e T-odd jet function has the advantages of universality,
flexibility, and high predictive power.

e T-odd jet functions provide new input to the global
analysis of nonperturbative proton structure.
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Thank you.
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Backup slides
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AZIMUTHAL ASYMMETRY AT LEADING TWIST

TMD PDFs and TMD JFs encoded in azimuthal asymmetries:
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The F's are convolutions of TMD PDFs and TMD JFs:

ClwfJ] = xZeg /d2pT /koT5(2) (pr + ar — kr) w(pr, k1) f(2, p%)J (2, kF)
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where h = P /|Py | and hy = hip + 2A12h
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