TMDs for spin-1 hadrons

Shunzo Kumano

High Energy Accelerator Research Organization (KEK) J-PARC Center (J-PARC) http://research.kek.jp/people/kumanos/ Collaborator: Qin-Tao Song (Ecole Polytechnique, Zhengzhou University)

24th International Spin Symposium, (In-person/Online) Matsue, Japan, October 18-22, 2021, https://indico2.riken.jp/event/3082/

Recent papers on spin-1:

(1) W. Cosyn, Yu-Bing Dong, SK, M. Sargsian, PRD 95 (2017) 074036.

(2) SK and Qin-Tao Song, PRD 94 (2016) 054022; 101 (2020) 054011 & 094013;

PRD 103 (2021) 014025 (this talk);

JHEP 09 (2021) 141 (Song's talk on Oct. 19).

(3) (NICA) A. Arbuzov et al., Prog. Nucl. Part. Phys. 119 (2021) 103858.

October 20, 2021

Contents

1. Introduction

- Tensor-polarized structure functions, gluon transversity
- 2. TMDs and PDFs of spin-1 hadrons up to twist 4
 - New TMDs and PDFs at twists 3 and 4
- **3. Future prospects and summary**

Nucleon spin

Almost none of nucleon spin is carried by quarks!

Sea-quarks and gluons?

→ Nucleon spin puzzle!?

Orbital angular momenta ?

b₁ experiment

"old" standard model **Tensor structure b**₁ (*e.g.* deuteron)

Tensor-structure puzzle!?

 \neq **b**₁ "standard model"

Experimental projects and personal works on spin-1 physics

Year	1988: EMC spin puzzle on proton	Personal studies of SK with collaborators
1990	1989: Hoodbhoy-Jaffe-Manohar on b _{1–4} [1983: Frankufurt-Strikman]	1990: Close and SK on b₁ sum rule
2000	1998: Courant's BNL report on polarized-deuteron acceleration at RHIC	1999: Hino and SK on formalism of p-d Drell-Yan
2010	2005: HERMES measurement on b ₁	2008: SK on projection operators for b ₁₋₄ 2010: SK on determination of
2010	2011: JLab proposal on b ₁ 2016: JLab LoI on gluon transversity	2016: SK and Song on tensor-polarized PDFs in p-d Drell-Yan 2017: Cosyn, Dong, SK, Sargsian,
2020	2021: NICA paper on deuteron 2022: Fermilab proposal on deuteron	on convolution estimate on b ₁ 2020: SK and Song on gluon transversity in p-d Drell-Yan, 2021: on TMDs and PDFs up to twist 4,
2030	2025 ~ : JLab, Fermilab, NICA, LHCspin, · · · 2030's : EIC/EicC, · · ·	twist-2 relation and sum rule for PDFs

Deuteron spin-1 physics will be developed significantly in 2020's and 2030's.

Standard model prediction for b_1 of deuteron

$$b_{1}(x) = \int \frac{dy}{y} \delta_{T} f(y) F_{1}^{N}(x / y, Q^{2}), \quad y = \frac{Mp \cdot q}{M_{N}P \cdot q} \approx \frac{2p^{-}}{P^{-}}$$

$$\delta_{T} f(y) = f^{0}(y) - \frac{f^{+}(y) + f^{-}(y)}{2}$$

$$= \int d^{3}p y \left[-\frac{3}{4\sqrt{2\pi}} \phi_{0}(p) \phi_{2}(p) + \frac{3}{16\pi} |\phi_{2}(p)|^{2} \right] (3\cos^{2}\theta - 1) \delta \left(y - \frac{p \cdot q}{M_{N}v} \right)$$

S-D term D-D term

 $\gamma * W_{\mu\nu} = \frac{1}{\pi} \operatorname{Im} T_{\mu\nu}$ q N

Nucleon momentum distribution:

$$f^{H}(y) \equiv f^{H}_{\uparrow}(y) + f^{H}_{\downarrow}(y) = \int d^{3}p \ y \left[\phi^{H}(\vec{p})\right]^{2} \delta\left(y - \frac{E - p_{z}}{M_{N}}\right)$$

D-state admixture: $\phi^H(\vec{p}) = \phi^H_{\ell=0}(\vec{p}) + \phi^H_{\ell=2}(\vec{p})$

W. Cosyn, Yu-Bing Dong, SK, M. Sargsian, Phys. Rev. D 95 (2017) 074036. Standard model of the deuteron

Standard convolution model does not work for the deuteron tensor structure!?

Gluon transversity $\Delta_T g$

Helicity amplitude $A(\Lambda_i, \lambda_i, \Lambda_f, \lambda_f)$, conservation $\Lambda_i - \lambda_i = \Lambda_f - \lambda_f$ Longitudinally-polarized quark in nucleon: $\Delta q(x) \sim A\left(+\frac{1}{2}+\frac{1}{2}, +\frac{1}{2}+\frac{1}{2}\right) - A\left(+\frac{1}{2}-\frac{1}{2}, +\frac{1}{2}-\frac{1}{2}\right)$ Quark transversity in nucleon: $\Delta_T q(x) \sim A\left(+\frac{1}{2}+\frac{1}{2}, -\frac{1}{2}-\frac{1}{2}\right)$, $\lambda_i = +\frac{1}{2} \rightarrow \lambda_f = -\frac{1}{2}$ quark spin flip ($\Delta s = 1$) Gluon transversity in deuteron: $\Delta_T g(x) \sim A\left(+1+1+1, -1-1\right)$, $A(+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}-1)$ not possible for nucleon $+\frac{1}{2} + \frac{1}{2} + \frac{1}$

Note: Gluon transversity does not exist for spin-1/2 nucleons.

$$b_1 \ (\delta_T q, \ \delta_T g) \neq 0 \ \Leftrightarrow \ \text{still} \ \Delta_T g = 0$$

$$\bigvee$$
What would be the mechanism(s)
for creating $\Delta_T g \neq 0$?

TMDs and PDFs for spin-1 hadrons

S. Kumano and Qin-Tao Song, Phys. Rev. D 103 (2021) 014025.

Twsit-2 TMDs for spin-1/2 nucleons and spin-1 hadrons

Twist-2 TMDs

Quark	$\mathrm{U}\left(\pmb{\gamma}^{+} ight)$		L (γ	·*γ ₅)	T $(i\sigma^{i+}\gamma_5 / \sigma^{i+})$		
Hadron	T-even	T-odd	T-even T-odd		T-even	T-odd	
U	f_1					$[h_1^{\perp}]$	
L			g_{1L}		$[h_{1\mathrm{L}}^{\perp}]$		
Т		$f_{1\mathrm{T}}^{\perp}$	<i>g</i> _{1T}		$[h_1], [h_{1\mathrm{T}}^{\perp}]$		
LL	$f_{1 \mathrm{LL}}$					$[h_{1\mathrm{LL}}^{\perp}]$	
LT	f_{1LT}			g _{1LT}		$[h_{1LT}], [h_{1LT}^{\perp}]$	
ТТ	f _{1TT}			g _{1TT}		$[h_{1\mathrm{TT}}], [h_{1\mathrm{TT}}^{\perp}]$	

Twist-2 collinear PDFs [···]= chiral odd

Quark	U (γ ⁺)		L (γ	⁺ γ ₅)	T $(i\sigma^{i+}\gamma_5 / \sigma^{i+})$	
Hadron	T-even	T-odd	T-even T-odd		T-even	T-odd
U	f_1					
L			g _{1L} (g ₁)			
Т					[<i>h</i> ₁]	
LL	$f_{1LL}(b_1)$					
LT						*1
ТТ						

Bacchetta-Mulders, PRD 62 (2000) 114004.

Spin-1/2 nucleon

*1 Because of the time-reversal invariance, the collinear PDF $h_{1/T}(x)$ vanishes. However, since the time-reversal invariance cannot be imposed in the fragmentation functions, we should note that the corresponding fragmentation function $H_{1LT}(z)$ should exist as a collinear fragmentation function. (see our PRD paper for the details)

TMD correlation functions for

$$\begin{aligned}
& \text{PMD correlation functions for spin-1 hadrons} \\
& \text{Spin vector: } S^{\mu} = S_{L} \frac{P^{+}}{M} \overline{n}^{\mu} - S_{L} \frac{M}{2P^{+}} n^{\mu} + S_{T}^{\mu} \\
& \text{Tensor: } T^{\mu\nu} = \frac{1}{2} \left[\frac{4}{3} S_{LL} \frac{(P^{+})^{2}}{M^{2}} \overline{n}^{\mu} \overline{n}^{\nu} + \frac{P^{+}}{M} \overline{n}^{(\mu} S_{LT}^{\nu)} - \frac{2}{3} S_{LL} (\overline{n}^{(\mu} n^{\nu)} - g_{T}^{\mu\nu}) + S_{TT}^{\mu\nu} - \frac{M}{2P^{+}} n^{(\mu} S_{LT}^{\nu)} + \frac{1}{3} S_{LL} \frac{M^{2}}{(P^{+})^{2}} n^{\mu} n^{\nu} \right] \\
& \text{Tensor part (twist-2): Bacchetta, Mulders, PRD 62 (2000) 114004} \\
& \Phi(k, P, T) = \left(\frac{A_{13}}{M} I + \frac{A_{14}}{M^{2}} P' + \frac{A_{15}}{M^{2}} k' + \frac{A_{16}}{M^{3}} \sigma_{\rho\sigma} P^{\rho} k^{\sigma} \right) k_{\mu} k_{\nu} T^{\mu\nu} + \left[A_{17} \gamma_{\nu} + \left(\frac{A_{18}}{M} P^{\rho} + \frac{A_{19}}{M} k^{\rho} \right) \sigma_{\nu\rho} + \frac{A_{20}}{M^{2}} \varepsilon_{\nu\nu\rho\sigma} P^{\rho} k^{\sigma} \gamma^{\tau} \gamma_{5} \right] k_{\mu} T^{\mu\nu}
\end{aligned}$$

Tensor part (twist-2, 3, 4): n^{μ} dependent terms are added for up to twist 4.

Tensor part (twist-2): Bacchetta, Mulders, PRD 62 (2000) 114004

Spin vector: $S^{\mu} = S_L \frac{P^+}{M} \overline{n}^{\mu} - S_L \frac{M}{2P^+} n^{\mu} + S_T^{\mu}$

[For the spin-1/2 nucleon: Goeke, Metzand, Schlegel, PLB 618 (2005) ,90; Metz, Schweitzer, Teckentrup, PLB 680 (2009) 141.] Kumano-Song-2021, for the details see PRD 103 (2021) 014025

$$\Phi(k, P, T \mid n) = \left[\frac{A_{13}}{M} I + \frac{A_{14}}{M^2} P' + \frac{A_{15}}{M^2} R' + \frac{A_{16}}{M^3} \sigma_{\rho\sigma} P^{\rho} k^{\sigma} \right] k_{\mu} k_{\nu} T^{\mu\nu} + \left[A_{17} \gamma_{\nu} + \left(\frac{A_{18}}{M} P^{\rho} + \frac{A_{19}}{M} R^{\rho} \right) \sigma_{\nu\rho} + \frac{A_{20}}{M^2} \varepsilon_{\nu\rho\sigma} P^{\rho} k^{\sigma} \gamma^{\tau} \gamma_{s} \right] k_{\mu} T^{\mu\nu}}{R^{\rho} n^{2} r^{2} r^$$

From this correlation function, new tensor-polarized TMDs are defined in twist-3 and 4 in addition to twist-2 ones.

Terms associated with $n = \frac{1}{\sqrt{2}}(1, 0, 0, -1)$

Twist-3 TMDs for spin-1 hadrons

$$\begin{split} \Phi^{[\Gamma]}(x,k_{T},T) &= \frac{1}{2} \mathrm{Tr} \Big[\Phi^{[\Gamma]}(x,k_{T},T) \Gamma \Big] = \frac{1}{2} \mathrm{Tr} \Big[\int dk^{-} \Phi(k,P,T|n) \Gamma \Big], \quad F(x,k_{T}^{2}) &= F'(x,k_{T}^{2}) - \frac{k_{T}^{2}}{2M^{2}} F^{\perp}(x,k_{T}^{2}) \\ \Phi^{[\gamma']}(x,k_{T},T) &= \frac{M}{P^{+}} \Big[f_{LL}^{\perp}(x,k_{T}^{2}) \frac{S_{LL}k_{T}^{\perp}}{M} + f_{LT}'(x,k_{T}^{2}) S_{LL}^{\perp} - f_{LT}^{\perp}(x,k_{T}^{2}) \frac{k_{T}^{\perp}S_{LT}\cdot k_{T}}{M^{2}} - f_{TT}'(x,k_{T}^{2}) \frac{S_{T}^{\parallel}k_{T}}{M} + f_{TT}^{\perp}(x,k_{T}^{2}) \frac{k_{T}^{\perp}k_{T}\cdot k_{T}}{M} - f_{TT}^{\perp}(x,k_{T}^{2}) \frac{k_{T}^{\perp}S_{TT}\cdot k_{T}}{M^{2}} - f_{TT}'(x,k_{T}^{2}) \frac{S_{T}^{\parallel}k_{T}}{M} + f_{TT}^{\perp}(x,k_{T}^{2}) \frac{k_{T}^{\perp}k_{T}\cdot k_{T}}{M^{2}} - f_{TT}'(x,k_{T}^{2}) \frac{S_{T}^{\parallel}k_{T}}{M} + f_{TT}'(x,k_{T}^{2}) \frac{k_{T}^{\perp}S_{TT}\cdot k_{T}}{M^{2}} \\ \Phi^{[1]}(x,k_{T},T) &= \frac{M}{P^{+}} \Big[e_{LL}(x,k_{T}^{2}) S_{LL} - e_{LT}^{\perp}(x,k_{T}^{2}) \frac{S_{TT}\mu_{P}k_{T}^{\mu}e_{T}^{\mu}e_{T}^{\mu}}{M^{2}} - f_{TT}'(x,k_{T}^{2}) \frac{k_{T}^{\mu}S_{TT}\cdot k_{T}}{M^{2}} \Big] \\ \Phi^{[1]}(x,k_{T},T) &= \frac{M}{P^{+}} \Big[-g_{LL}^{\perp}(x,k_{T}^{2}) \frac{S_{LL}e_{T}^{\mu}k_{T}}{M} - g_{TT}'(x,k_{T}^{2}) \frac{S_{TT}\mu_{P}k_{T}^{\mu}e_{T}^{\mu}e_{T}^{\mu}e_{T}^{\mu}e_{T}^{\mu}}{M^{2}} \Big] \\ \Phi^{[1]}(x,k_{T},T) &= \frac{M}{P^{+}} \Big[-g_{LL}^{\perp}(x,k_{T}^{2}) \frac{S_{LL}e_{T}^{\mu}k_{T}}{M} - g_{TT}'(x,k_{T}^{2}) \frac{S_{TT}\mu_{P}k_{T}^{\mu}e_{T}^{\mu}e_{T}^{\mu}e_{T}^{\mu}}{M^{2}} \Big] \\ \Phi^{[1]}(x,k_{T},T) &= \frac{M}{P^{+}} \Big[-g_{LL}^{\perp}(x,k_{T}^{2}) \frac{S_{LL}e_{T}^{\mu}k_{T}}{M} - g_{TT}'(x,k_{T}^{2}) \frac{S_{T}\mu_{P}k_{T}^{\mu}e_{T}^{\mu}e_{T}^{\mu}}{M^{2}} \Big] \\ \Phi^{[1]}(x,k_{T},T) &= \frac{M}{P^{+}} \Big[h_{LL}(x,k_{T}^{2}) S_{LL} - h_{LT}(x,k_{T}^{2}) \frac{S_{T}^{\mu}k_{T}}{M} + h_{TT}(x,k_{T}^{2}) \frac{k_{T}^{\mu}k_{T}}{M^{2}} - \frac{k_{T}^{\mu}k_{T}}{M^{2}} \Big] \\ \Phi^{[1]}(x,k_{T},T) &= \frac{M}{P^{+}} \Big[h_{LT}^{\perp}(x,k_{T}^{2}) \frac{S_{T}\mu_{T}k_{T}}{M} - h_{TT}^{\perp}(x,k_{T}^{2}) \frac{S_{T}\mu_{T}k_{T}}}{M} + h_{TT}(x,k_{T}^{2}) \frac{S_{T}\mu_{T}k_{T}k_{T}^{\mu}}{M^{2}} \Big] \\ \Phi^{[1]}(x,k_{T},T) &= \frac{M}{P^{+}} \Big[h_{LT}^{\perp}(x,k_{T}^{2}) \frac{S_{T}\mu_{T}k_{T}}}{M} - h_{TT}^{\perp}(x,k_{T}^{2}) \frac{S_{T}\mu_{T}k_{T}}}{M} - h_{TT}^{\perp}(x,k_{T}^{2}) \frac{S_{T}\mu_{T}k_{T}}}{M} \Big] \\ \Phi^{[1]}(x,k_{T},T) &= \frac{M$$

Quark	$\gamma^i, 1, i\gamma_5$		γ+	γ ₅	$\sigma^{\scriptscriptstyle ij},\sigma^{\scriptscriptstyle -+}$	
Hadron	T-even T-odd		T-even	T-odd	T-even	T-odd
U	$\begin{array}{c}f^{\bot}\\[e]\end{array}$			g⊥		[<i>h</i>]
L		f_{L}^{\perp} [e_{L}]	$g_{ m L}^{\perp}$		$[h_{\rm L}]$	1 1 1 1 1 1 1
Т		$f_{\mathrm{T},} f_{\mathrm{T}}^{\perp}$ $[e_{\mathrm{T}}, e_{\mathrm{T}}^{\perp}]$		$g_{\mathrm{T}},g_{\mathrm{T}}^{\perp}$		
LL	$\begin{array}{c} f_{\rm LL}^{\rm I} \\ [e_{\rm LL}] \end{array}$			$g_{ m LL}^{\perp}$		$[h_{\rm LL}]$
LT	$\begin{bmatrix} f_{\text{LT}}, f_{\text{LT}}^{\perp} \\ [e_{\text{LT}}, e_{\text{LT}}^{\perp}] \end{bmatrix}$			g_{LT}, g_{LT}^{\perp}		$[h_{\mathrm{LT}}], [h_{\mathrm{LT}}^{\perp}]$
ТТ	$\begin{array}{c} f_{\mathrm{TT},} f_{\mathrm{TT}}^{\perp} \\ [e_{\mathrm{TT}}, e_{\mathrm{TT}}^{\perp}] \end{array}$			$g_{\mathrm{TT}}, g_{\mathrm{TT}}^{\perp}$		$[h_{\mathrm{TT}}], [h_{\mathrm{TT}}^{\perp}]$

Quark	$\gamma^i, 1$	$\gamma^i, 1, i\gamma_5$		γ ₅	$\pmb{\sigma}^{ij},\pmb{\sigma}^{ extsf{-+}}$	
Hadron	adron T-even T-odd		T-even	T-odd	T-even	T-odd
U	[<i>e</i>]			1 1 1 1 1 1		
L					$[h_{\rm L}]$	
Т			g_{T}	1 1 1 1 1 1		
LL	[<i>e</i> _{LL}]					*3
LT	$f_{ m LT}$			*2		
ТТ		1 1 1 1 1 1 1		1 1 1 1 1 1 1		

New TMDs

 $[\cdot \cdot \cdot] = chiral odd$

New collinear PDFs

Twist-4 TMDs for spin-1 hadrons

$$\begin{split} \Phi^{[\Gamma]}(x, k_T, T) &\equiv \frac{1}{2} \mathrm{Tr} \Big[\Phi^{[\Gamma]}(x, k_T, T) \, \Gamma \Big] = \frac{1}{2} \mathrm{Tr} \Big[\int dk^- \Phi(k, P, T \mid n) \, \Gamma \Big], \quad F(x, k_T^2) \equiv F'(x, k_T^2) - \frac{k_T^2}{2M^2} F^{\perp}(x, k_T^2) \\ \Phi^{[\gamma^-]}(x, k_T, T) &= \frac{M^2}{P^{+2}} \Big[f_{3LL}(x, k_T^2) S_{LL} - f_{3LT}(x, k_T^2) \frac{S_{LT} \cdot k_T}{M} + f_{3TT}(x, k_T^2) \frac{k_T \cdot S_{TT} \cdot k_T}{M^2} \Big] \\ \Phi^{[\gamma^-\gamma_5]}(x, k_T, T) &= \frac{M^2}{P^{+2}} \Big[g_{3LT}(x, k_T^2) \frac{S_{LT\mu} \varepsilon_T^{\mu\nu} k_{T\nu}}{M} + g_{3TT}(x, k_T^2) \frac{S_{TT\mu\rho} k_T^\rho \varepsilon_T^{\mu\nu} k_{T\nu}}{M^2} \Big] \\ \Phi^{[\sigma^{i-}]}(x, k_T, T) &= \frac{M^2}{P^{+2}} \Big[h_{3LL}^{\perp}(x, k_T^2) \frac{S_{LL} k_T^i}{M} + h_{3LT}'(x, k_T^2) S_{LT}^i - h_{3LT}^{\perp}(x, k_T^2) \frac{k_T^i S_{LT} \cdot k_T}{M^2} - h_{3TT}'(x, k_T^2) \frac{S_{TT}^{ij} k_{Tj}}{M} + h_{3TT}^{\perp}(x, k_T^2) \frac{k_T^i k_T \cdot S_{TT} \cdot k_T}{M^3} \Big] \end{split}$$

Quark	γ	γ-		γ 5	$oldsymbol{\sigma}^{i-}$		
Hadron	T-even T-odd		T-even	T-odd	T-even	T-odd	
U	f_3					$[h_3^{\perp}]$	
L			g 3L		$[h_{3\mathrm{L}}^{\perp}]$		
Т		$f_{ m 3T}^{ m ar }$	<i>g</i> _{3T}		$[h_{3\mathrm{T}}], [h_{3\mathrm{T}}^{\perp}]$		
LL	$f_{ m 3LL}$					$[h_{3\mathrm{LL}}^{\perp}]$	
LT	f _{3LT}			g 3lt		$[h_{3LT}], [h_{3LT}^{\perp}]$	
TT	fзтт			<i>8</i> 3тт		$[h_{3\mathrm{TT}}], [h_{3\mathrm{TT}}^{\perp}]$	

New TMDs

 $[\cdots] = chiral odd$

*4 Because of the time-reversal invariance, $h_{3LT}(x)$ does not exist; however, the corresponding new collinear fragmentation function $H_{3LT}(z)$ should exist because the time-reversal invariance does not have to be imposed.

Quark	γ-		γ-	γ_5	$\sigma^{\scriptscriptstyle i-}$	
Hadron	T-even	T-odd	T-even T-odd		T-even	T-odd
U	f_3					
L			g 3L			
Т					[<i>h</i> _{3T}]	
LL	$f_{ m 3LL}$					
LT						*4
ТТ						

New collinear PDFs

TMDs and their sum rules for spin-1 hadrons

Quark	U (γ ⁺)		L (γ	(γ_5)	T $(i\sigma^{i+}\gamma_5 / \sigma^{i+})$	
Hadron	T-even	T-odd	T-even	T-odd	T-even	T-odd
U	f_1					$[h_1^{\perp}]$
L			g _{1L}		$[h_{1\mathrm{L}}^{\perp}]$	
Т		$f_{1\mathrm{T}}^{\perp}$	g 1T		$[h_1], [h_{1\mathrm{T}}^{\perp}]$	
LL	$f_{1 m LL}$					$[h_{1LL}^{\perp}]$
LT	$f_{1\mathrm{LT}}$			g _{1LT}		$[h_{1LT}], [h_{1LT}^{\perp}]$
TT	$f_{1\mathrm{TT}}$			g _{1TT}		$[h_{1\mathrm{TT}}], [h_{1\mathrm{TT}}^{\perp}]$

Twist-2 TMDs

Twist-3 TMDs

Quark	$\gamma^i, 1, i\gamma_5$		γ^+	γ ₅	$\sigma^{ij},\sigma^{ extsf{-+}}$		
Hadron	T-even T-odd		T-even	T-odd	T-even	T-odd	
U	f^{\perp} [e]			g^{\perp}		[<i>h</i>]	
L		$f_{ m L}^{\perp}$ [$e_{ m L}$]	$g_{ m L}^{ \perp}$		$[h_{\rm L}]$		
Т		$f_{\mathrm{T},} f_{\mathrm{T}}^{\perp}$ [$e_{\mathrm{T}}, e_{\mathrm{T}}^{\perp}$]	$g_{\mathrm{T},}g_{\mathrm{T}}^{\perp}$		$[h_{\mathrm{T}}], [h_{\mathrm{T}}^{\perp}]$		
LL	$\begin{array}{c} f_{\rm LL}^{\perp} \\ [e_{\rm LL}] \end{array}$			$g_{\rm LL}^{\perp}$			
LT	$\begin{array}{c} f_{\mathrm{LT},} f_{\mathrm{LT}}^{\perp} \\ [e_{\mathrm{LT}}, e_{\mathrm{LT}}^{\perp}] \end{array}$			$g_{\mathrm{LT}}, g_{\mathrm{LT}}^{\perp}$		$[h_{\mathrm{LT}}], [h_{\mathrm{LT}}^{\perp}]$	
ТТ	$f_{\mathrm{TT},} f_{\mathrm{TT}}^{\perp}$ $[e_{\mathrm{TT}}, e_{\mathrm{TT}}^{\perp}]$			$g_{\mathrm{TT}}, g_{\mathrm{TT}}^{\perp}$		$[h_{\mathrm{TT}}], [h_{\mathrm{TT}}^{\perp}]$	

Time-reversal invariance in colliear corrlation functions (PDFs)

$$\int d^2 k_T \Phi_{\text{T-odd}}(x,k_T^2) = 0$$

Sum rules for the TMDs of spin-1 hadrons

$$\int d^2 k_T h_{1LT}(x, k_T^2) = 0, \qquad \int d^2 k_T g_{LT}(x, k_T^2) = 0, \int d^2 k_T h_{LL}(x, k_T^2) = 0, \qquad \int d^2 k_T h_{3LT}(x, k_T^2) = 0$$

For example, in the twist-4

$$\int d^2 k_T h_{3LT}(x, k_T^2) \equiv \int d^2 k_T \left[h_{3LT}'(x, k_T^2) - \frac{k_T^2}{2M^2} h_{3LT}(x, k_T^2) \right] = 0$$

$$\Phi^{[\sigma^{i-}]} = \frac{M^2}{P^{+2}} \left[h_{3LL}^{\perp}(x, k_T^2) S_{LL} \frac{k_T^i}{M} + h_{3LT}'(x, k_T^2) S_{LT}^i - h_{3LT}^{\perp}(x, k_T^2) \frac{k_T^i S_{LT} \cdot k_T}{M^2} \right]$$

$$- h_{3TT}'(x, k_T^2) \frac{S_{TT}^{ij} k_{Tj}}{M} + h_{3TT}^{\perp}(x, k_T^2) \frac{k_T \cdot S_{TT} \cdot k_T}{M^2} \frac{k_T^i}{M} \right]$$

Twist-4 TMDs

Quark	τ γ	γ-		γ₅	σ^{i-}		
Hadron	T-even	T-even T-odd		T-odd	T-even	T-odd	
U	f_3					$[h_3^{\perp}]$	
L			g _{3L}		$[h_{3L}^{\perp}]$		
Т		$f_{ m 3T}^{\perp}$	g 3T	1 1 1 1 1 1 1	$[h_{3\mathrm{T}}], [h_{3\mathrm{T}}^{\perp}]$		
LL	$f_{3 \mathrm{LL}}$					$[h_{3\mathrm{LL}}^{\perp}]$	
LT	f _{3LT}			g _{3LT}		$[h_{3LT}], [h_{3LT}^{\perp}]$	
TT	f _{3TT}			<i>8</i> 3tt		$[h_{3\mathrm{TT}}], [h_{3\mathrm{TT}}^{\perp}]$	

New fragmentations for spin-1 hadrons

Corresponding fragmentation functions exist for the spin-1 haddrons simply by changing function names and kinematical variables.

TMD distribution functions: $f, g, h, e; x, k_T, S, T, M, n, \gamma^+, \sigma^{i+}$

TMD fragmentation functions: D, G, H, E; z, k_T , S_h , T_h , M_h , \overline{n} , γ^- , σ^{i-}

Collinear fragmentation functions: X. Ji, Phys. Rev. D 49, 114 (1994).

PDFs for spin-1 hadrons

Twist-2 PDFs

Quark	U (γ ⁺)		L (γ	⁺ γ ₅)	T $(i\sigma^{i+}\gamma_5 / \sigma^{i+})$	
Hadron	T-even T-odd		T-even T-odd		T-even	T-odd
U	f_1					
L			g _{1L} (g ₁)			
Т					[<i>h</i> ₁]	
LL 🕻	$f_{1LL}(b_1)$)				
LT						*1
TT						

Twist-3 PDFs

Quark	$\boldsymbol{\gamma}^i, 1$	l, <i>iγ</i> 5	γ*	γ ₅	σ^{ij}, σ^{-+}	
Hadron	T-even	T-odd	T-even	T-odd	T-even	T-odd
U	[<i>e</i>]					
L					$[h_{\rm L}]$	
Т			g _T			
LL	[<i>e</i> _{LL}]					*3
LT	$f_{ m LT}$	X		*2		
ТТ						

*1: $h_{1LT}(x)$, *2: $g_{LT}(x)$, *3: $h_{LL}(x)$, *4: $h_{3LT}(x)$

Because of the time-reversal invariance, the collinear PDF vanishes. However, since the time-reversal invariance cannot be imposed in the fragmentation functions, we should note that the corresponding fragmentation function should exist as a collinear fragmentation function.

We derived analogous relations to Wandzura-Wilczek relation and Burkhardt-Cottingham sum rule for f_{LT} and f_{1LL} . (\rightarrow Song's talk)

> SK and Qin-Tao Song, JHEP 09 (2021) 141

Twist-4 PDFs

Quark	γ-		$\gamma^-\gamma_5$		σ^{i-}	
Hadron	T-even	T-odd	T-even	T-odd	T-even	T-odd
U	f_3			1 		
L			g _{3L}			
Т					[<i>h</i> _{3T}]	
LL	$f_{ m 3LL}$					
LT						*4
ТТ						

Twist-2 relation and sum rule

• Twist-3 matrix element in terms of tensor-polarized PDFs

$$\left\langle P,T \middle| \bar{\psi}(0)(\partial^{\mu}\gamma^{\alpha} - \partial^{\alpha}\gamma^{\mu})\psi(\xi) \middle| P,T \right\rangle = 2MS_{LT}^{\alpha} \int_{-1}^{1} dx \, e^{-ixP^{+}\xi^{-}} \left[-\frac{3}{2} f_{1LL}(x) + f_{LT}(x) - \frac{d}{dx} \left\{ x f_{LT}(x) \right\} \right]$$

• Twist-3 operator in terms of gluon field tensor

$$\xi_{\mu}\left[\overline{\psi}(0)(\gamma^{\alpha}\partial^{\mu}-\gamma^{\mu}\partial^{\alpha})\psi(\xi)\right] = g\int_{0}^{1} dt \,\overline{\psi}(0)\left\{i\left(t-\frac{1}{2}\right)G^{\alpha\mu}\left(t\xi\right)-\frac{1}{2}\gamma_{s}\widetilde{G}^{\alpha\mu}\left(t\xi\right)\right\}\xi_{\mu}\xi\psi(\xi)$$

• Matrix element of field tensor in terms of twist-3 multiparton distribution functions

$$\int \frac{d(P \cdot \xi)}{2\pi} e^{ix_1 P \cdot \xi} \langle P, T | g \int_0^1 dt \, \overline{\psi}(0) \left\{ i \left(t - \frac{1}{2} \right) G^{\mu\nu}(t\xi) - \frac{1}{2} \gamma_s \tilde{G}^{\mu\nu}(t\xi) \right\} \xi_\mu \not{\xi} \psi(\xi) | P, T \rangle_{\xi^* = \tilde{\xi}_r = 0}$$

$$= -2M S_{LT}^{\nu} \mathcal{P} \int_0^1 dx_2 \frac{1}{x_1 - x_2} \left[\frac{\partial}{\partial x_1} \left\{ F_{G,LT}(x_1, x_2) + G_{G,LT}(x_1, x_2) \right\} + \frac{\partial}{\partial x_2} \left\{ F_{G,LT}(x_2, x_1) + G_{G,LT}(x_2, x_1) \right\} \right]$$

$$\begin{aligned} x \frac{df_{LT}(x)}{dx} &= -\frac{3}{2} f_{1LL}(x) - f_{LT}^{(HT)}(x), & \text{Higher-twist: } f_{LT}^{(HT)}(x) = -\mathcal{P} \int_{0}^{1} dy \frac{1}{x - y} \left[\frac{\partial}{\partial x} \left\{ F_{G,LT}(x,y) + G_{G,LT}(x,y) \right\} + \frac{\partial}{\partial y} \left\{ F_{G,LT}(y,x) + G_{G,LT}(y,x) + G_{G,LT}(y,x) \right\} \right] \\ &\to f_{LT}(x) = \frac{3}{2} \int_{x}^{\varepsilon(x)} \frac{dy}{y} f_{1LL}(y) + \int_{x}^{\varepsilon(x)} \frac{dy}{y} f_{LT}^{(HT)}(y), \quad \varepsilon(x) = \frac{i}{\pi} \mathcal{P} \int_{-\infty}^{\infty} dy \frac{1}{y} e^{-ixy} = \begin{cases} +1 & x > 0 \\ -1 & x < 0 \end{cases} \end{aligned}$$
Define $f^{+}(x) = f(x) + \overline{f}(x) = f(x) - f(-x), \quad f = f_{1LL}, \quad f_{LT}, \quad f_{LT}^{(HT)}, \quad x > 0 \end{aligned}$

$$\Rightarrow f_{LT}^{+}(x) = \frac{3}{2} \int_{x}^{1} \frac{dy}{y} f_{1LL}^{+}(y) + \int_{x}^{1} \frac{dy}{y} f_{LT}^{(HT)+}(y) \quad \Rightarrow \text{Twist-2 relation:} \quad f_{LT}^{+}(x) = \frac{3}{2} \int_{x}^{1} \frac{dy}{y} f_{1LL}^{+}(y)$$

If we define $f_{2LT}(x) = \frac{2}{3} f_{LT}(x) - f_{1LL}(x)$,

E

$$f_{2LT}^{+}(x) = -f_{1LL}^{+}(x) + \int_{x}^{1} \frac{dy}{y} f_{1LL}^{+}(y) + \frac{2}{3} \int_{x}^{1} \frac{dy}{y} f_{LT}^{(HT)+}(y) \rightarrow \text{Twist-2 relation:} \quad f_{2LT}^{+}(x) = -f_{1LL}^{+}(x) + \int_{x}^{1} \frac{dy}{y} f_{1LL}^{+}(y), \quad \text{Wandzura-Wilczek like}$$
$$\rightarrow \text{Sum rule:} \quad \int_{0}^{1} dx \ f_{2LT}^{+}(x) = 0, \qquad \text{Burkhardt-Cottingham like}$$

If the parton-model sum rule without the tensor-polarized antiquark distributions $\int_0^1 dx f_{1LL}^+(x) = \frac{2}{3} \int_0^1 dx b_1^+(x) = 0$ is valid, \rightarrow Sum rule: $\int_0^1 dx f_{LT}^+(x) = 0$

$$g_{2}(x) = -g_{1}(x) + \int_{x}^{1} \frac{dy}{y} g_{1}(y) \text{ (Wandzura-Wilczek relation),} \qquad \int_{0}^{1} dx g_{2}(x) = 0 \text{ (Burkhardt-Cottingham sum rule)}$$
or tensor-polarized spin-1 hadrons, we obtained
$$f_{2LT}^{+}(x) = -f_{1LL}^{+}(x) + \int_{x}^{1} \frac{dy}{y} f_{1LL}^{+}(y), \qquad \int_{0}^{1} dx f_{2LT}^{+}(x) = 0, \qquad f_{2LT}(x) = \frac{2}{3} f_{LT}(x) - f_{1LL}(x)$$

$$\int_{0}^{1} dx f_{LT}^{+}(x) = 0 \text{ if } \int_{0}^{1} dx f_{1LL}^{+}(x) = \frac{2}{3} \int_{0}^{1} dx b_{1}^{+}(x) = 0$$
kistence of multiparton distribution functions: $F_{G,LT}(x_{1}, x_{2}), G_{G,LT}(x_{1}, x_{2}), H_{G,LT}^{\perp}(x_{1}, x_{2})$

Skip this page: Song's talk on Oct.19, SK and Qin-Tao Song, JHEP 09 (2021) 141. Future prospects and summary

Spin-1 deuteron experiments from the middle of 2020'sJLabFermilabNICALHCspin

A Letter of Intent to Jefferson Lab PAC 44, June 6, 2016 Search for Exotic Gluonic States in the Nucleus

M. Jones, C. Keith, J. Maxwell*, D. Meekins Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 W. Detmold, R. Jaffe, R. Milner, P. Shanahan Laboratory for Nuclear Science, MIT, Cambridge, MA 02139 D. Crabb, D. Day, D. Keller, O. A. Rondon University of Virginia, Charlottesville, VA 22904 J. Pierce

Oak Ridge National Laboratory, Oak Ridge, TN 37831

Proposal (approved), Experiment: middle of 2020's

The Transverse Structure of the Deuteron with Drell-Yan D. Keller¹ ¹University of Virginia, Charlottesville, VA 22904

Proposal, Fermilab-PAC: January, 2022 Experiment: 2020's

Contents lists available at ScienceOverct Progress in Particle and Nuclear Physics journal homepage: www.elsevier.com/docate/pope

view

On the physics potential to study the gluon content of proton and deuteron at NICA SPD

A. Arbuzov⁺, A. Bacchetta¹⁶², M. Butenschoen⁴, F.G. Celiberto^{16,27}, U. D'Alesio¹⁶³, M. Deka¹, I. Denisenko⁺, M.G. Echevarra¹, A. Efremov⁺, N.Y.a. Ivanov⁺, A. Gusko^{16,27}, A. Karpishkov⁻, Ya. Klopet⁴, B.A. Kniehl⁴, A. Kotzinian⁴⁰, S. Kumano¹⁷, J.P. Lansberg¹¹, Keh-Fei Liu⁺, F. Murgia¹⁸, M. Nefedov⁺, B. Parsamya^{4,406}, C. Pisano^{18,3}, M. Radici¹⁷, A. Rymbekova⁴, V. Saleev¹⁴, A. Shipilova¹⁴, Qin-Tao Song¹⁴, O. Teryaev¹⁴

Prog. Nucl. Part. Phys. 119 (2021) 103858, Experiment: middle of 2020's

1.0

2030's EIC/EicC

R. Abdul Khalek *et al.* arXiv:2103.05419.

D. P. Anderle *et al.*, Front. Phys. 16 (2021) 64701.

REVIEW ARTICLE

Electron-ion collider in China

Frontiers of Physics

Daniele P. Anderle¹, Valerio Bertone², Xu Cao^{5,4}, Lei Chang², Ningbo Chang⁴, Gu Chen³,
 Xwong Chen^{3,4}, Zhunjun Gren⁴, Zhufang Cul³, Lingvun Da⁴, Weitian Deng¹¹, Minghui Ding¹¹,
 Yung¹¹, Deng¹¹, Sung¹², Deng¹², Sung¹², Deng¹², Minghui Ding¹¹,
 Teo-Jian Hon⁴⁵, Hongyin Huang¹¹, Yu Kueqian Li, Yutie Liang¹⁴, Zu Kang¹⁴, Le Kapata^{14,15},
 Demin Li²⁰, Hengme Li, Minxiang Li²⁻¹, Xuoeqian Li, Yutie Liang¹⁴, Zuotang Liang²⁴, Chen Liu²¹,
 Chuan Liu²¹, Guoning Liu, He Liu¹⁴, Liuming Liu¹⁴, Xiang Liu¹⁵, Xiang Ma^{14,25}, Lijun Mao¹⁴,
 Cédric Mezza², Hervé Mutarde¹, Jahan Ping¹⁵, Sixuo Qiu¹⁷, Hang Reno R. Most¹⁴, Craig D. Roberts⁴,
 Juan Rojc^{25,25}, Guodong Shen¹⁴, Chao Shi¹⁶, Qiatao Song²⁶, Hao Sun³¹, Pawel Sznajder²⁷,
 Benke Wang¹, Fan Wang², Guodong Shen¹⁴, Chao Shi¹⁶, Qiatao Song²⁶, Hao Sun³¹, Pawel Sznajder²⁷,
 Gaoqing Xiao⁴, Yuang¹⁴, Jianping Ke¹⁴, Huggu Yang¹⁴, Singang Wa¹⁴, Kui Xu¹⁴, Yu Xu²⁴, Sing¹⁴, Yugu Yang¹⁴,
 Kiao Yu Xung²⁶, Deliang Yuo⁵, Zhihong Yu¹⁴, Piel¹⁴, Nug¹⁴, To Gaog Zhao,
 YiBo Yang⁴⁴, Hongwei Zhao,³⁴, Jianbung Yu¹⁶, Jiang Zhao,⁵⁶, Yuxiang Zhao,⁵⁴,
 Jahamba Zhang⁴⁴, Jiang Zhao,⁵⁴, Hong¹⁴, Jian Zhao,⁵⁴, Kuang Zhao,⁵⁴, Yukiang Zhao,⁵⁴, Kuang Zhao,⁵⁴, Jiangano Zhao,⁵⁴, Hang Zhao,⁵⁴, Jiang Zhao,⁵⁶, Yuxiang Zhao,⁵⁴, Jiang Zhao,⁵⁶, Yuxiang Zhao,⁵⁴, Jiang Zhao,⁵⁶, Jiang Zhao,⁵⁶, Jiang Zhao,⁵⁶, Yuxiang Zhao,⁵⁴, Singaguo Zhao,⁵⁶, Huang Zhao,⁵⁶, Jiang Zhao,⁵⁶, Yuxiang Zhao,⁵⁶, Suxiang Zhao,⁵⁶, Suxiang Zhao,⁵⁶, Suxiang Zhao,⁵⁶, Suxiang Zhao,⁵⁶, Suxiang Zhao,⁵⁶, Jiang Zhao,⁵⁶, Jian Zhou⁷⁵, J

CERN-ESPP-Note-2018-111

The LHCSpin Project

L++C

C. A. Aidala¹, A. Bacchetta^{5,3}, M. Boglione^{4,5}, G. Bozzi^{2,3}, V. Carassiti^{6,7}, M. Chiosso^{4,5}, R. Cimino⁸, G. Cimino^{5,4}, M. Contalbrigo^{5,7}, U. D'Alesio^{5,40}, P. Di Nezza⁶, R. Engels^{1,8}, K. Grigoryev^{1,1}, D. Keller^{1,2}, P. Lenie^{4,7}, S. Littl^{2,1}, A. Metz^{1,3}, P. Muders^{4,1,5}, P. Murglia^{1,4}, A. Nassi¹, D. Panzie^{1,1,6}, S. Scopetta^{1,50,50}, M. Radics^{1,4}, F. Rathman^{1,1}, D. Reggianl^{1,7}, M. Schlegel¹⁸, S. Scopetta^{1,50,50}, E. Steffers^{2,1}, A. Vasilyev²

arXiv:1901.08002, Experiment: ~2028

Summary: our spin-1 TMD and PDF studies

TMDs of spin-1 hadrons

- TMDs: interdisciplinary field of physics
- We proposed new 30 TMDs and 3 PDFs in twist 3 and 4.
- New sum rules for TMDs.
- New TMD fragmentation functions.

Twist-3 TMD: f_{LL}^{\perp} , e_{LL} , f_{LT} , f_{LT}^{\perp} , e_{1T} , e_{1T}^{\perp} , f_{TT} , f_{TT}^{\perp} , e_{TT} , e_{TT}^{\perp} , e_{TT}^{\perp} , g_{TT}^{\perp} , g_{LL} , g_{LT} , g_{LT}^{\perp} , g_{TT}^{\perp} , g_{TT}^{\perp} , h_{1L} , h_{LT} , h_{LT}^{\perp} , h_{TT}^{\perp} , h_{TT}^{\perp} Twist-4 TMD: f_{3LL} , f_{3LT} , f_{3TT} , g_{3LT} , f_{3TT} , h_{3LL}^{\perp} , h_{3LT} , h_{3TT}^{\perp} , h_{3TT}^{\perp} , h_{3TT}^{\perp} Twist-3 PDF: e_{LL} , f_{LT} Twist-4 PDF: f_{3LL} Sum rules: $\int d^2k_T g_{LT}(x, k_T^2) = \int d^2k_T h_{LL}(x, k_T^2) = \int d^2k_T h_{3LL}(x, k_T^2) = 0$ TMD distribution functions: f, g, h, e; x, k_T , S, T, M, n, γ^+ , σ^{i+} \downarrow TMD fragmentation functions: D, G, H, E; z, k_T , S_h , T_h , M_h , \bar{n} , γ^- , σ^{i-}

The End

The End