Beam Spin Asymmetries of π⁺π⁰ dihadrons from SIDIS at CLAS12

Christopher Dilks

for the CLAS Collaboration

SPIN 2021

Research supported by the

--

$$A_{LU} = \frac{d\sigma_{+} - d\sigma_{-}}{d\sigma_{+} + d\sigma_{-}} \qquad \text{Sensitive to:} \quad \text{PDF} \otimes \text{DiFF}$$

$$\boxed{\textbf{Twist 2}} \qquad A_{LU} \sim f_1 G_1^{\perp |\ell, m\rangle} \qquad G_1^{\perp |\ell, m\rangle} = \textcircled{o} \swarrow \overset{\texttt{h1}}{\texttt{h2}} - \textcircled{o} \checkmark \overset{\texttt{h1}}{\texttt{h2}}$$

$$\boxed{\textbf{Twist 3}} \qquad A_{LU} \sim e H_1^{\neq |\ell, m\rangle} \qquad H_1^{\neq |\ell, m\rangle} = \textcircled{o} \swarrow \overset{\texttt{h1}}{\texttt{h2}} - \textcircled{o} \checkmark \overset{\texttt{h1}}{\texttt{h2}}$$

$$H_1^{\neq |\ell, m\rangle} = \textcircled{o} \checkmark \overset{\texttt{h1}}{\texttt{h2}} - \textcircled{o} \checkmark \overset{\texttt{h1}}{\texttt{h2}}$$

$$\underbrace{f_1 = \texttt{o} \checkmark \overset{\texttt{h1}}{\texttt{h2}} - \textcircled{o} \checkmark \overset{\texttt{h1}}{\texttt{h2}}}_{\texttt{h2}} = \textcircled{o} \checkmark \overset{\texttt{h1}}{\texttt{h2}} - \textcircled{o} \checkmark \overset{\texttt{h1}}{\texttt{h2}}$$

$$\underbrace{f_1 = \texttt{o} \checkmark \overset{\texttt{h1}}{\texttt{h2}} - \textcircled{o} \checkmark \overset{\texttt{h1}}{\texttt{h2}}}_{\texttt{h2}} = \textcircled{o} \checkmark \overset{\texttt{h1}}{\texttt{h2}} = \textcircled{o} \checkmark \overset{$$

- $\pi^+\pi^0$ and $\pi^-\pi^0$ measurements are complementary to $\pi^+\pi^$ measurements, broadening insight to DiFF flavor dependence
- No evidence of exclusive dominance at low missing mass M_x, but should be studied in more detail with Monte Carlo (MC) comparisons
- \blacklozenge The presented measurement focuses on $\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle 0}$

CLAS 12

V. Burkert et al., Nucl.Instrum.Meth.A 959 (2020) 163419

Forward Detector

- Torus Magnet
- Drift Chamber (DC)
- Forward Time of Flight (FTOF)
- High-threshold Cherenkov Counter (HTCC)
- Low-threshold Cherenkov Counter (LTCC)
- Ring Imaging Cherenkov Detector (RICH)
- Preshower + Electromagnetic Calorimeter (PCAL/EC)
- Forward Tagger (FT)

Longitudinally Polarized Electron Beam

- E = 10.2-10.6 GeV
- P = 86–89%
- Unpolarized Liquid H₂ Fixed Target

Data Set:

- Fall 2018 (10.6 GeV) + Spring 2019 (10.2 GeV)
- Torus magnet → electrons inbending
- ~800k π + π 0 dihadrons

General Cuts

- ♦ Q² > 1 GeV²
- ♦ W > 2 GeV
- ♦ y < 0.8</p>
- $5^{\circ} < \theta < 35^{\circ}$ (applied to all)

- PID Refinement
- Vertex
- Fiducial volume

Pion and Dihadron Cuts

- ♦ X_F(π⁺), X_F(π⁰) > 0
- p(π⁺) > 1.25 GeV
- p(π⁰) cut given by photon cuts (→)

◆ Z_{pair} < 0.95</p>

Model: Gaussian + Chebyshev Quadratic $f(M_{\gamma\gamma}) = N_s f_s (M_{\gamma\gamma}) + N_b f_b (M_{\gamma\gamma})$

• $f_s(M_{\gamma\gamma}) = \text{Gauss}(M_{\gamma\gamma}, \mu, \sigma)$

•
$$f_b(M_{\gamma\gamma}) = b_1 M_{\gamma\gamma} + b_2 \left(2M_{\gamma\gamma}^2 - 1 \right)$$

6 fit parameters

One fit per A_{LU} bin

Background Corrections: sWeighted Likelihood Fit

Calculate sWeights W_s for each π^+ yy event with 80 < M_{yy} < 200 MeV

τ[°] fit model:
$$f(M_{\gamma\gamma}) = N_s f_s(M_{\gamma\gamma}) + N_b f_b(M_{\gamma\gamma})$$

signal background

 $W_{s}(M_{\gamma\gamma}) = \frac{V_{ss}f_{s}(M_{\gamma\gamma}) + V_{sb}f_{b}(M_{\gamma\gamma})}{\int f(M_{\gamma\gamma})}$

covariance

• Weighting a data distribution D(x) with $W_{_{S}}(M_{_{\gamma\gamma}})$ reproduces, on average, the true signal distribution

• Requires M_{vv} to not be correlated with x

- BG-corrected fit performed by weighting likelihood with W_s(m)
- Advantage over "sideband subtraction" correction methods by minimizing the amount of sideband data needed, which could have different physics and acceptance effects

Q² distribution

- Compare sWeighted data distributions with reconstructed MC
- ♦ Reconstructed MC diphotons are matched to generated true $π^0 → γγ$ decays
- ♦ Data are normalized to sum of sWeights
- ♦ MC are normalized to number of dihadrons
- $\mathbf{\Phi}$ Q² shapes are in very good agreement

$\pi^{+}\pi^{0}$ Dihadron Invariant Mass

M_h distribution

 $[\]blacklozenge \rho^+(770)$ peak visible

- ◆ Some differences at low M_h , comparable to data/MC agreement in the π⁺π⁻ channel
- M_h correlates with γγ-background around M_h<0.5 GeV, possibly impacting sWeighting efficacy in this region
- Agreement better for M_h>0.5 GeV, where correlated γγ-background is at M_{γγ}>>M_{π0}

$\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle 0}$ Kinematics Distributions

x distribution

z distribution

 \Rightarrow z distributions differ slightly, but cover the same range

$\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle 0}$ Kinematics Distributions

 \Rightarrow Similar differences of ϕ_h near $\pm \pi$ are also seen in Data/MC comparisons for $\pi^+\pi^-$ dihadrons

 \clubsuit Some differences in $0 < \phi_R < \pi$, possibly attributable to mild correlated yy background in that region C. Dilks

7 amplitude simultaneous fit Not including θ -modulations (partial waves) **Presented asymmetries focus on G**¹, and sin(φ_R) for eH[<]₁

Twist 2
$$A_{LU} \sim f_1 G_1^{\perp |\ell, m\rangle}$$
 $G_1^{\perp |\ell, m\rangle} = \bigoplus_{h_2}^{h_1} \bigoplus_{h_2}^{h_1} \bigoplus_{h_2}^{h_1}$
 $\stackrel{\text{sin}(2\phi_h - 2\phi_{R_\perp})}{\stackrel{\text{sin}(\phi_h - \phi_{R_\perp})}{\stackrel{\text{sin}(\phi_h - \phi_{R_\perp})}{\stackrel{\text{sin}(\phi_h)}{\stackrel{\text{sin}(2\phi_h - \phi_{R_\perp})}{\stackrel{\text{sin}(2\phi_h - \phi_{R_\perp})}{\stackrel{\text{sin}(2\phi_h - \phi_{R_\perp})}{\stackrel{\text{sin}(2\phi_h - \phi_{R_\perp})}{\stackrel{\text{sin}(2\phi_h - \phi_{R_\perp})}}}$ $H_1^{\neq |\ell, m\rangle = \bigoplus_{h_2}^{h_1} \bigoplus_{h_2}^{h_1} \bigoplus_{h_2}^{h_1}$

 $A_{LU} \sin(\phi_h - \phi_R)$ amplitude is positive for most of M_h range

◆ Peak near ρ⁺(770) in sin(2 ϕ_p –2 ϕ_R) amplitude (interference of *p*-state dihadrons)

C. Dilks

 $A_{LU} \sin(\phi_R)$ amplitude seems much smaller

• Compare $A_{LU} \sin(\phi_h - \phi_R)$ amplitude for $\pi^+ \pi^0$ (left) to $\pi^+ \pi^-$ (right)

• Sign change seen in $\pi^+\pi^-$ around the ρ mass (0.77 GeV) not observed in $\pi^+\pi^0$

C. Dilks

• Compare $A_{LU} \sin(2\phi_h - 2\phi_R)$ amplitudes

 \Rightarrow This amplitude requires *pp*-interference, and ρ mesons being spin 1 prefer to decay to p-state $\pi\pi$

 \blacklozenge Similar enhancement at the ρ mass is observed for both channels

 A_{LU} can be a function of x via the PDF: $f_1(x)$ for twist-2 (left,middle) and e(x) for twist-3 (right)

 \Rightarrow Twist-3 amplitude of sin(ϕ_R) is consistent with zero; this is sensitive to e(x) H₁[<]

CLAS12 π⁺π⁻ A_{LU} measurement can be used for point-by-point extraction of e(x), given knowledge of H₁[<] from Belle measurements [Phys.Rev.D 85 (2012) 114023]
 π⁺π⁰ could give some insight onto flavor dependence of H₁[<]

C. Dilks

◆ z dependence of sin($\phi_h - \phi_R$) amplitude has a slow rise
◆ sin($2\phi_h - 2\phi_R$) may be relatively constant / decreasing

• Compare to $\pi^+\pi^-$ measurement, which was divided into two M_h bins

• Slow rise with respect to z also seen in $\pi^+\pi^-$ for $M_h < M_o$

C. Dilks

Summary

π^{+/-}π⁰ Asymmetries:

- Access different sets of flavor-dependent DiFFs
- Exclusive production suppressed
- Requires yy-background corrections implemented with sWeighted likelihood fit

Preliminary Measurement Observations:

- Significant twist-2 asymmetries, sensitive to G_1^{\perp} , no sign change at ρ (unlike $\pi^+\pi^-$)
- Twist-3 asymmetry $sin\phi_{R}$ amplitude consistent with zero

Outlook and Plans

- Systematic uncertainties
- $\pi^-\pi^0$ channel
- Investigate nonzero background asymmetries
- Improve photon selection and matching
- Partial wave fits with Markov Chain Monte Carlo (MCMC)

H. Matevosyan, et al., Phys.Rev.D 96 (2017) 7, 074010