

Istituto Nazionale di Fisica Nucleare

PROGRESS IN THE EXTRACTION OF UNPOLARIZED TMDS FROM GLOBAL DATA SETS

Matteo Cerutti

MAP Collaboration

SPIN 2021

October 19th

RESULTS OBTAINED WITH CONTRIBUTIONS FROM

Alessandro Bacchetta

Andrea Signori

Giuseppe Bozzi

Marco Radici

Valerio Bertone

Fulvio Piacenza

Chiara Bissolotti

The W term dominates in the region where $q_T \ll Q$ Ş

- The W term dominates in the region where $q_T \ll Q$ Ş
- Y term has been excluded in the Pavia analyses Ş

$$F_{UU}^{1}(x_{A}, x_{B}, \boldsymbol{q}_{T}^{2}, Q^{2})$$

$$\approx \sum_{q} \mathcal{H}_{UU}^{1q}(Q^{2}, \mu^{2}) \int d^{2}\boldsymbol{k}_{\perp A} d^{2}\boldsymbol{k}_{\perp B} f_{1}^{q}(x_{A}, \mu^{2})$$

$$= \sum_{q} \mathcal{H}_{UU}^{1q}(Q^{2}, \mu^{2}) \int db_{T} b_{T} J_{0}(b_{T}|\boldsymbol{q}_{T}|) \hat{f}_{1}^{q}(x_{A}, \mu^{2})$$

 $(k_{\perp A}^2; \mu^2) f_1^{\bar{q}}(x_B, k_{\perp B}^2; \mu^2) \delta^{(2)}(k_{\perp A} - q_T + k_{\perp B})$

 $(x_A, b_T^2; \mu^2) \hat{f}_1^{\bar{q}}(x_B, b_T^2; \mu^2)$

$$F_{UU}^{1}(x_{A}, x_{B}, \boldsymbol{q}_{T}^{2}, Q^{2})$$

$$\approx \sum_{q} \mathcal{H}_{UU}^{1q}(Q^{2}, \mu^{2}) \int d^{2}\boldsymbol{k}_{\perp A} d^{2}\boldsymbol{k}_{\perp B} f_{1}^{q}(x_{A}, \mu^{2})$$

$$= \sum_{q} \mathcal{H}_{UU}^{1q}(Q^{2}, \mu^{2}) \int db_{T} b_{T} J_{0}(b_{T}|\boldsymbol{q}_{T}|) \hat{f}_{1}^{q}(x_{A}, \mu^{2})$$

At small q_T the dominant part is given by TMDs
 Fourier-transformed space to avoid convolutions
 TMDs formally depend on two scales, but we set them equal.

 $(k_{\perp A}^2; \mu^2) f_1^{\bar{q}}(x_B, k_{\perp B}^2; \mu^2) \delta^{(2)}(k_{\perp A} - q_T + k_{\perp B})$

 $x_A, b_T^2; \mu^2) \hat{f}_1^{\bar{q}} (x_B, b_T^2; \mu^2)$

TMDS IN SEMI-INCLUSIVE DIS PROCESS

TMD STRUCTURE

 $\hat{f}_{1}^{q}(x, b_{T}; \mu^{2}) = \int d^{2}\boldsymbol{k}_{\perp} e^{i\boldsymbol{b}_{T}\cdot\boldsymbol{k}_{\perp}} f_{1}^{q}(x, \boldsymbol{k}_{\perp}^{2}; \mu^{2})$

 $\hat{f}_{1}^{q}(x, b_{T}; \mu^{2}) = \int d^{2}\boldsymbol{k}_{\perp} e^{i\boldsymbol{b}_{T}\cdot\boldsymbol{k}_{\perp}} f_{1}^{q}(x, \boldsymbol{k}_{\perp}^{2}; \mu^{2})$

$\hat{f}_1^q(x, b_T; \mu^2) = \sum_i \left(C_{qi} \otimes f_1^i \right)(x, b_*; \mu_b) e^{\tilde{S}(b_*; \mu_b, \mu)} e^{g_K(b_T) \ln \frac{\mu}{\mu_0}} \hat{f}_{\rm NP}^q(x, b_T)$

$$\hat{f}_1^q(x, b_T; \mu^2) = \int d^2 \boldsymbol{k}_\perp e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} f_1^q(x, \boldsymbol{k}_\perp^2; \mu^2)$$

 $\hat{f}_1^q(x, b_T; \mu^2) = \sum_i \left(C_{qi} \otimes f_1^i \right)(x, b_*; \mu_b) e^{\tilde{S}(b_*; \mu_b, \mu)} e^{g_K(b_T) \ln \frac{\mu}{\mu_0}} \hat{f}_{\mathrm{NP}}^q(x, b_T)$

$$\mu_b = \frac{2e^{-\gamma_E}}{b_*}$$

$$\hat{f}_1^q(x, b_T; \mu^2) = \int d^2 \boldsymbol{k}_\perp e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} f_1^q(x, \boldsymbol{k}_\perp^2; \mu^2)$$

$$\hat{f}_{1}^{q}(x, b_{T}; \mu^{2}) = \sum_{i} \left(C_{qi} \otimes f_{1}^{i} \right) (x, b_{*}; \mu_{b}) e^{i \theta_{*}}$$

$$\mu_{b} = \frac{2e^{-\gamma_{E}}}{b_{*}}$$
matching coefficients (perturbative)

 $e^{\tilde{S}(b_*;\mu_b,\mu)}e^{g_K(b_T)\ln\frac{\mu}{\mu_0}}\hat{f}^q_{\rm NP}(x,b_T)$

$$\hat{f}_1^q(x, b_T; \mu^2) = \int d^2 \boldsymbol{k}_\perp e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} f_1^q(x, \boldsymbol{k}_\perp^2; \mu^2)$$

$$\hat{f}_1^q(x, b_T; \mu^2) = \int d^2 \boldsymbol{k}_\perp e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} f_1^q(x, \boldsymbol{k}_\perp^2; \mu^2)$$

$$\hat{f}_1^q(x, b_T; \mu^2) = \int d^2 \boldsymbol{k}_\perp e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} f_1^q(x, \boldsymbol{k}_\perp^2; \mu^2)$$

$$\hat{f}_1^q(x, b_T; \mu^2) = \int d^2 \boldsymbol{k}_\perp e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} f_1^q(x, \boldsymbol{k}_\perp^2; \mu^2)$$

Orders in powers of α_S

Orders in powers of α_S

Orders in powers of α_S

Orders in powers of α_S

Collinear fragmentation functions not available beyond NLO!!

RECENT GLOBAL FITS OF UNPOLARIZED TMD DATA

	Framework	HERMES	COMPASS	DY	Z production	N of points	χ^2/N_{points}
Pavia 2017 arXiv:1703.10157	NLL		•	•	•	8059	1.55
SV 2017 arXiv:1706.01473	NNLL'	×	×	•	~	309	1.23
BSV 2019 arXiv:1902.08474	NNLL'	×	×	~	•	457	1.17
SV 2019 arXiv:1912.06532	N ³ LL	~	~	•	•	1039	1.06
Pavia 2019 arXiv:1912.07550	N ³ LL	×	×	~	•	353	1.02

New Global Fit

New Global Fit

• SIDIS + Drell Yan

New Global Fit

New Global Fit

Integrated variables \bigcirc

New Global Fit

Integrated variables

Simultaneously extraction of unpolarized TMD PDFs and FFs

Nanga Parbat: a TMD fitting framework

Nanga Parbat is a fitting framework aimed at the determination of the non-perturbative component of TMD distributions.

Download

You can obtain NangaParbat directly from the github repository:

https://github.com/vbertone/NangaParbat/releases

For the last development branch you can clone the master code:

git clone git@github.com:vbertone/NangaParbat.git

If you instead want to download a specific tag:

https://github.com/MapCollaboration

New Global Fit

- Integrated variables 0
- Up to N²LL/N³LL Ο

Simultaneously extraction of unpolarized TMD PDFs and FFs

Nanga Parbat: a TMD fitting framework

Nanga Parbat is a fitting framework aimed at the determination of the non-perturbative component of TMD distributions.

Download

You can obtain NangaParbat directly from the github repository:

https://github.com/vbertone/NangaParbat/releases

For the last development branch you can clone the master code:

git clone git@github.com:vbertone/NangaParbat.git

If you instead want to download a specific tag:

https://github.com/MapCollaboration

RESULTS AT NLL: SIDIS (MULTIPLICITIES)

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157

10

RESULTS AT NLL: SIDIS (MULTIPLICITIES)

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157

What we found

RESULTS AT NLL: SIDIS (MULTIPLICITIES)

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157

What we found

11

RESULTS AT NLL: DRELL YAN

RESULTS AT NLL: DRELL YAN

D0 Run II muons

12

RESULTS AT NLL: DRELL YAN

D0 Run II muons

We need to increase the accuracy!!

12

Accuracy at N²LL and N³LL

Accuracy at N²LL and N³LL

What we expected

Accuracy at N²LL and N³LL

Bacchetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici, arXiv:1912.07550

Accuracy at N²LL and N³LL

Bacchetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici, arXiv:1912.07550

What we get

Bacchetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici, arXiv:1912.07550

Accuracy at N²LL and N³LL

Bacchetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici, arXiv:1912.07550

Accuracy at N²LL and N³LL

The description considerably worsens at higher orders!!

COMPARISON OF DIFFERENT ORDERS – SIDIS

COMPASS multiplicities (one of many bins)

The description considerably worsens at higher orders!!

RATIO DATA/PREDICTIONS: SIDIS

COMPASS multiplicities (one of many bins)

The discrepancy amounts to an almost <u>constant factor</u>!!

Introduction of a normalization prefactor

PREFACTOR(x, z,

$$Q) = \frac{\frac{d\sigma^{h}}{dx dQ^{2} dz}}{\int W d^{2} q_{T}}$$

Introduction of a normalization prefactor

$$PREFACTOR(x, z, Q) = \frac{\frac{d\sigma^{h}}{dx dQ^{2} dz}\Big|_{\text{nonmix.}}}{\int W d^{2} q_{T}}$$

Introduction of a normalization prefactor

$$\text{PREFACTOR}(x, z, Q) = \frac{\frac{d\sigma^h}{dx dQ^2 dz}\Big|_{\text{nonmix.}}}{\int W d^2 q_T}$$

$$\frac{d\sigma^{h}}{dxdQ^{2}dz}\Big|_{O(\alpha_{S})} = \sigma_{0} \sum_{f,f'} \frac{e_{f}^{2}}{z^{2}} (\delta_{f'f} + \delta_{f'g}) \frac{\alpha_{S}}{\pi} \left\{ \left[D_{1}^{h/f'} \otimes C_{1}^{f'f} \otimes f_{1}^{f/N} \right](x,z,Q) \right\} \Big|_{\text{nonmix.}}$$
$$\int W \Big|_{O(\alpha_{S})} = \sigma_{0} \sum_{f,f'} \frac{e_{f}^{2}}{z^{2}} (\delta_{f'f} + \delta_{f'g}) \frac{\alpha_{S}}{\pi} \left[D_{1}^{h/f'} \otimes C_{\text{TMD}}^{f'f} \otimes f_{1}^{f/N} \right](x,z,Q)$$

Introduction of a normalization prefactor

$$\text{PREFACTOR}(x, z, Q) = \frac{\frac{d\sigma^h}{dx dQ^2 dz}\Big|_{\text{nonmix.}}}{\int W d^2 q_T}$$

$$\frac{d\sigma^{h}}{dxdQ^{2}dz}\Big|_{O(\alpha_{S})} = \sigma_{0} \sum_{f,f'} \frac{e_{f}^{2}}{z^{2}} (\delta_{f'f} + \delta_{f'g}) \frac{\alpha_{S}}{\pi} \left\{ \left[D_{1}^{h/f'} \otimes C_{1}^{f'f} \otimes f_{1}^{f/N} \right](x,z,Q) \right\} \Big|_{\text{nonmix.}}$$
$$\int W \Big|_{O(\alpha_{S})} = \sigma_{0} \sum_{f,f'} \frac{e_{f}^{2}}{z^{2}} (\delta_{f'f} + \delta_{f'g}) \frac{\alpha_{S}}{\pi} \left[D_{1}^{h/f'} \otimes C_{\text{TMD}}^{f'f} \otimes f_{1}^{f/N} \right](x,z,Q)$$

Independent of the fitting parameters!!

SOME JUSTIFICATION: INITIAL SITUATION

SOME JUSTIFICATION: INITIAL SITUATION

 q_T [GeV]

SOLUTION1: RESTRICT TMD REGION

 q_T [GeV]

SOLUTION2: ENHANCE TMD CONTRIBUTIONS

 q_T [GeV]

MAP21 TMD FIT CHOICES (PRELIMINARY)

$\langle Q \rangle > 1.3 \text{ GeV}$ 10¹ 0.2 < z < 0.6 $q_T < 0.2 Q$ (DY) $P_{hT} < \min[\min[0.2Q, 0.5zQ] + 0.3 \text{ GeV}, zQ]$

 $[V, zQ] \quad (SIDIS)$

MAP21 TMD FIT CHOICES (PRELIMINARY)

$\langle Q \rangle > 1.3 \text{ GeV}$ 10¹ 0.2 < z < 0.6 10⁰ $q_T < 0.2 Q$ (DY) $P_{hT} < \min[\min[0.2Q, 0.5zQ] + 0.3 \text{ GeV}, zQ]$

Number of points > 1500

 $[V, zQ] \quad (SIDIS)$

 $f_{1NP}(x, b_T^2) \propto F.T. \text{ of } \left(e^{-\frac{k_{\perp}^2}{g_{1A}}} + \lambda_B k_{\perp}^2 e^{-\frac{k_{\perp}^2}{g_{1B}}} + \lambda_C e^{-\frac{k_{\perp}^2}{g_{1C}}} \right)$

 $f_{1NP}(x, b_T^2) \propto \text{F.T. of } \left(e^{-\frac{k_\perp^2}{g_{1A}}} + \lambda_B k_\perp^2 \epsilon\right)$

$$e^{-\frac{k_{\perp}^2}{g_{1B}}} + \lambda_C e^{-\frac{k_{\perp}^2}{g_{1C}}} \Big)$$

Still working on the flexibility of the final form

$$f_{1NP}(x, b_T^2) \propto \text{F.T. of} \left(e^{-\frac{k_\perp^2}{g_{1A}}} + \lambda_B k_\perp^2 e^{-\frac{k_\perp^2}{g_{1B}}} + \lambda_C e^{-\frac{k_\perp^2}{g_{1C}}} \right)$$

$$g_1(x) = N_1 \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}$$

$$g_K(b_T^2) = -\frac{g_{2A}}{2}b_T^2 - \frac{g_{2B}}{2}b_T^4$$

Still working on the flexibility of the final form

$$f_{1NP}(x, b_T^2) \propto \text{F.T. of} \left(e^{-\frac{k_\perp^2}{g_{1A}}} + \lambda_B k_\perp^2 e^{-\frac{k_\perp^2}{g_{1B}}} + \lambda_C e^{-\frac{k_\perp^2}{g_{1C}}} \right)$$

$$g_1(x) = N_1 \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}$$

$$g_K(b_T^2) = -\frac{g_{2A}}{2}b_T^2 - \frac{g_{2B}}{2}b_T^4$$

Still working on the flexibility of the final form

11 parameters for TMD PDF + 2 for NP evolution + 14 for FF = 27 free parameters

N²LL: EXAMPLE OF GOOD BINS

 $0.20 \ P_{hT} [{
m GeV}]$ 0.050.10 0.150.250.30 0.35

Global $\chi^2 < 1.1$

N²LL: EXAMPLE OF GOOD BINS

 $0.20 \ P_{hT} [{
m GeV}]$ 0.150.250.30 0.350.050.10

Global $\chi^2 < 1.1$

N²LL: EXAMPLE OF BAD BINS

Global $\chi^2 < 1.1$

DY data can NOT be described at NLL, but only at higher orders

DY data can NOT be described at NLL, but only at higher orders Ş

SIDIS data can be described very well at NLL, but require normalization Ş prefactors at NLL' or higher

DY data can NOT be described at NLL, but only at higher orders Ş

- SIDIS data can be described very well at NLL, but require normalization Ş prefactors at NLL' or higher
- Ş open issue

The identification of the region of applicability of the TMD formalism is still an

DY data can NOT be described at NLL, but only at higher orders Ş

- SIDIS data can be described very well at NLL, but require normalization Ş prefactors at NLL' or higher
- Ş open issue

Ş describe

The identification of the region of applicability of the TMD formalism is still an

Good global χ^2 can be reached at N²LL, but some LHC data remain hard to

BACKUP SLIDES

LOGARITHMIC ACCURACY

Sudakov form factor

$$LL \qquad \alpha_{S}^{n} \ln^{2n} \left(\frac{Q^{2}}{\mu_{b}^{2}}\right)$$

$$NLL \qquad \alpha_{S}^{n} \ln^{2n} \left(\frac{Q^{2}}{\mu_{b}^{2}}\right), \quad \alpha_{S}^{n} \ln^{2n-1} \left(\frac{Q}{\mu_{b}^{2}}\right)$$

$$NLL' \qquad \alpha_{S}^{n} \ln^{2n} \left(\frac{Q^{2}}{\mu_{b}^{2}}\right), \quad \alpha_{S}^{n} \ln^{2n-1} \left(\frac{Q}{\mu_{b}^{2}}\right)$$

the difference between the two is NNLL: $\alpha_S^n \ln^{2n-2} \left(\frac{Q^2}{\mu_h^2} \right)$

NON-MIXED TERMS IN COLLINEAR SIDIS CROSS SECTION - BACKUP

$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\mathrm{d}Q^{2}\mathrm{d}z}\bigg|_{O(\alpha_{s}^{1})} = \sigma_{0}\sum_{ff'}\frac{e_{f}^{2}}{z^{2}}\left(\delta_{f'f}+\delta_{f'g}\right)\frac{d}{z}$$
$$+\frac{1-y}{1+(1-y)^{2}}\left[D_{1}^{h/f'}\otimes C_{L}^{f'f'}\right]$$

 $\frac{\alpha_s}{\pi} \left\{ \left[D_1^{h/f'} \otimes C_1^{f'f} \otimes f_1^{f/N} \right] (x, z, Q) \right\}$

 $f \otimes f_1^{f/N} \Big] (x, z, Q) \Big\},$

NON-MIXED TERMS IN COLLINEAR SIDIS CROSS SECTION - BACKUP

$$\begin{split} \frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\mathrm{d}Q^{2}\mathrm{d}z}\bigg|_{O(\alpha_{s}^{1})} &= \sigma_{0}\sum_{ff'}\frac{e_{f}^{2}}{z^{2}}\left(\delta_{f'f}+\delta_{f'g}\right)\frac{\alpha_{s}}{\pi}\bigg\{\left[D_{1}^{h/f'}\otimes C_{1}^{f'f}\otimes f_{1}^{f/N}\right](x,z,Q) \\ &+\frac{1-y}{1+(1-y)^{2}}\left[D_{1}^{h/f'}\otimes C_{L}^{f'f}\otimes f_{1}^{f/N}\right](x,z,Q)\bigg\},\end{split}$$

$$\begin{split} C_1^{qq} &= \frac{C_F}{2} \Bigg\{ -8\delta(1-x)\delta(1-z) \\ &+ \delta(1-x) \left[P_{qq}(z) \ln \frac{Q^2}{\mu_F^2} + L_1(z) + L_2(z) + (1-z) \right] \\ &+ \delta(1-z) \left[P_{qq}(x) \ln \frac{Q^2}{\mu^2} + L_1(x) - L_2(x) + (1-x) \right] \\ &+ 2 \frac{1}{(1-x)_+} \frac{1}{(1-z)_+} - \frac{1+z}{(1-x)_+} - \frac{1+x}{(1-z)_+} + 2(1+xz) \Bigg\}, \end{split}$$

NON-MIXED TERMS IN COLLINEAR SIDIS CROSS SECTION - BACKUP

$$\begin{split} \frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\mathrm{d}Q^{2}\mathrm{d}z}\bigg|_{O(\alpha_{s}^{1})} &= \sigma_{0}\sum_{ff'}\frac{e_{f}^{2}}{z^{2}}\left(\delta_{f'f}+\delta_{f'g}\right)\frac{\alpha_{s}}{\pi}\bigg\{\left[D_{1}^{h/f'}\otimes C_{1}^{f'f}\otimes f_{1}^{f/N}\right](x,z,Q) \\ &+\frac{1-y}{1+(1-y)^{2}}\left[D_{1}^{h/f'}\otimes C_{L}^{f'f}\otimes f_{1}^{f/N}\right](x,z,Q)\bigg\},\end{split}$$

$$\begin{split} C_1^{qq} &= \frac{C_F}{2} \Bigg\{ -8\delta(1-x)\delta(1-z) \\ &+ \delta(1-x) \left[P_{qq}(z) \ln \frac{Q^2}{\mu_F^2} + L_1(z) + L_2(z) + (1-z) \right] \\ &+ \delta(1-z) \left[P_{qq}(x) \ln \frac{Q^2}{\mu^2} + L_1(x) - L_2(x) + (1-x) \right] \\ &+ 2 \frac{1}{(1-x)_+} \frac{1}{(1-z)_+} \frac{1+z}{(1-z)_+} - \frac{1+x}{(1-z)_+} + 2(1+xz) \Bigg\}, \end{split}$$

$$+ \delta(1-x) \left[P_{qq}(z) \ln \frac{Q^2}{\mu_F^2} + L_1(z) + L_2(z) + (1-z) \right] \\ + \delta(1-z) \left[P_{qq}(x) \ln \frac{Q^2}{\mu^2} + L_1(x) - L_2(x) + (1-x) \right] \\ + 2 \frac{1}{(1-x)_+} \frac{1}{(1-z)_+} \frac{1+z}{(1-z)_+} - \frac{1+x}{(1-z)_+} + 2(1+xz) \right],$$