Development of Iron Thin Films for Polarization Analysis of Ultracold Neutrons

2021-10-19 SPIN2021

Hiroaki Akatsuka, Masahiro Hino, TUCAN collaboration

Contents

Introduction

- Ultra Cold Neutron (UCN)
- Neutron Electric Dipole Moment (nEDM)
- TUCAN overview
- Principle of UCN polarization measurement

Development and Evaluation of UCN polarization analyzer films

- Development of UCN polarization analyzer films
- B-H curve measurement by Vibrating Sample Magnetometry (VSM)
- Neutron reflectivity measurement

Conclusions and Outlook

Contents

Introduction

- Ultra Cold Neutron (UCN)
- Neutron Electric Dipole Moment (nEDM)
- TUCAN overview
- Principle of UCN polarization measurement

Development and Evaluation of UCN polarization analyzer films

- Development of UCN polarization analyzer films
- B-H curve measurement by Vibrating Sample Magnetometry (VSM)
- Neutron reflectivity measurement

Conclusions and Outlook

Ultra Cold Neutron (UCN)

Ultra Cold Neutron

- Energy $\leq 300 \,\mathrm{neV}$
- velocity $\sim 8 \,\mathrm{m/s}$
- wavelength $\sim 50 \,\mathrm{nm}$

Major interaction on UCNs

- Magnetic : $\mu_n = -60 \text{ neV/T}$
- Gravity: $m_n g = -102 \text{ neV/m}$
- Weak interaction $\rightarrow \beta$ -decay (n $\rightarrow p + e + \bar{\nu}_{\rho}$)
- Strong interaction \rightarrow Fermi potential (ex. Ni 234 neV)

Used in a variety of basic physics experiments For example, gravity, lifetime, neutron Electric Dipole Moment (nEDM), etc.

Confinement by matter, gravity, and magnetic field potential allows for long time (~100 s) observations. →Longer measurement time for nEDM

Neutron Electric Dipole Moment

Neutron EDM (nEDM) violates the time-reversal (T) symmetry

Equivalent to **CP violation** assuming CPT symmetry

Provides crucial tests of **theories beyond SM**

• SM : 10^{-32} e · cm , SUSY $10^{-28} - 10^{-26}$ e · cm

Today's limitation: UCN intensity

The latest result by PSI nEDM collaboration:

$$d_n = (0.0 \pm 1.1_{\text{stat}} \pm 0.2_{\text{sys}}) \times 10^{-26} \text{ e} \cdot \text{cm}$$

 $\rightarrow |d_n| < 1.8 \times 10^{-26} \text{ e} \cdot \text{cm} (90 \% \text{ C} \cdot \text{L})$

Key for the next-generation nEDM measurement: intense UCN sources !

AIP Conf. Proc. 1753, 060002 (2016)

TRIUMF Ultra-Cold Advanced Neutron International collaboration between Japan and Canada (+US)

H. Akatsuka¹⁰, C. Bidinosti³, C. Davis⁵, B. Franke^{2,5}, M. Gericke⁴, P. Giampa⁵, R. Golub¹², S. Hansen-Romu^{3,4}, K. Hatanaka⁶, T. Hayamizu¹¹, T. Higuchi⁶, G. Ichikawa¹, S. Imajo⁶, B. Jamieson³, S. Kawasaki¹, M. Kitaguchi¹⁰, W. Klassen^{3,4}, A. Konaka⁵, E. Korkmaz⁷, E. Korobkina¹², F. Kuchler⁵, M. Lavvaf³, L. Lee⁵, T. Lindner^{3,5}, K. Madison², Y. Makida¹, J. Mammei⁴, R. Mammei^{3,5}, C. Marshall⁵, J. W. Martin³, R. Matsumiya⁵, M. McCrea³, E. Miller², K. Mishima¹, T. Momose², **EXAMPLE** Normal, N. Mormosez, L. Musulla', I. Mormosez, **EXAMPLE** Normal, N. H. Jin⁶, R. Picker^{5,9}, W. D. Ramsay⁵, W. Schreyer⁵, H. M. Shimizu¹⁰, S. Sidhu⁹ I. Tanibata6, S. Manharran², W. T. H. S. Sidhu⁹, I. Tanihata⁶, S. Vanbergen², W. T. H. van Oers^{4,5}, and Y. Watanabe¹

> ¹KEK, ²The University of British Columbia ³The University of Winnipeg, ⁴The University of Manitoba ⁵TRIUMF, ⁶RCNP, ⁷The University of Northern BC ⁸McGill University, ⁹Simon Fraser University ¹⁰Nagoya University, ¹¹Riken, ¹²NC State University

Goals of TUCAN

THE UNIVERSITY OF WINNIPEG

RIUMF

UNIVERSITY OF

- To construct the world's most intense ultra cold neutron source

Advanced

TRIUMF Ultra-Cold Advanced Neutron International collaboration between Japan and Canada (+US)

H. Akatsuka¹⁰, C. Bidinosti³ , P. Giampa⁵, **Overview** T. Higuchi⁶, R. Golub¹², S. Hansen-Ror 22/10/2021, 09:40 ⁰, W. Klassen^{3,4}, G. Ichikawa¹, S. Imajo⁶, B. Ja **Parallel Session Presentation** A. Konaka⁵, E. Korkmaz⁷, 62.The precision nEDM measurement af³, L. Lee⁵, ⁵, C. Marshall⁵, T. Lindner^{3,5}, K. Madison², Y. with UltraCold Neutrons at TRIUMF J. W. Martin³, R. Matsumiya⁵, M. McCrea³, E. Miller², K. Mishima¹, T. Momose², **EXAMPLE** Normal, N. Momosez, W. D. Ramsay⁵, W. Schreyer⁵, H. M. Shimizu¹⁰, S. Sidhu⁹ I. Tanihata⁶ S. Vanborgan², W. T. U. C. S. Sidhu⁹ I. Tanihata⁶ S. Vanborgan², W. T. U. C. S. Sidhu⁹ I. Tanihata⁶ S. Vanborgan², W. T. U. C. S. Sidhu⁹ I. Tanihata⁶ S. Vanborgan², W. T. U. C. S. Sidhu⁹ I. Tanihata⁶ S. Vanborgan², W. T. U. C. S. Sidhu⁹ I. Tanihata⁶ S. Vanborgan², W. T. U. C. S. Sidhu⁹ I. Tanihata⁶ S. Vanborgan², W. T. U. C. S. Sidhu⁹ I. Tanihata⁶ S. Vanborgan², W. T. U. C. S. Sidhu⁹ I. Tanihata⁶ S. Vanborgan², W. T. U. C. S. Sidhu⁹ I. Tanihata⁶ S. Vanborgan², W. T. U. C. S. Sidhu⁹ I. Tanihata⁶ S. Vanborgan², W. T. U. C. S. Sidhu⁹ I. Tanihata⁶ S. Vanborgan², W. T. U. C. S. Sidhu⁹ I. Tanihata⁶ S. Vanborgan², W. T. U. C. S. Sidhu⁹ I. Tanihata⁶ S. Vanborgan², W. T. U. C. S. Sidhu⁹ I. Tanihata⁶ S. Vanborgan², W. T. U. C. S. Sidhu⁹ I. Tanihata⁶ S. Vanborgan², W. T. U. C. S. Sidhu⁹ I. Tanihata⁶ S. Vanborgan², W. T. U. S. Sidhu⁹ I. Tanihata⁶ S. Vanborgan², W. T. U. S. Sidhu⁹ I. S. Sidhu⁹ I. Tanihata⁶ S. Vanborgan², W. T. U. S. S. Sidhu⁹ J. Tanihata⁶ S. Vanborgan², W. T. U. S. Sidhu⁹ J. Tanihata⁶ S. Vanborgan², W. T. U. S. Sidhu⁹ J. S. Si S. Sidhu⁹, I. Tanihata⁶, S. Vanbergen², W. T. H. van Oers^{4,5}, and Y. Watanabe¹ THE UNIVERSITY OF WINNIPEG

¹KEK, ²The University of British Columbia ³The University of Winnipeg, ⁴The University of Manitoba ⁵TRIUMF, ⁶RCNP, ⁷The University of Northern BC ⁸McGill University, ⁹Simon Fraser University ¹⁰Nagoya University, ¹¹Riken, ¹²NC State University

Goals of TUCAN

RIUMF

UNIVERSITY OF

- To construct the world's most intense ultra cold neutron source

To measure the neutron electric dipole moment with an accuracy of $10^{-27} \, e \cdot cm$

Advanced

Principle of nEDM measurement

Assume EDM exists

• Interaction between magnetic field B and magnetic moment μ_n , electric field d_n and EDM

$$H = -\mu_n \cdot B - d_n \cdot E$$

• Relationship B between magnetic field and electric field E and Larmor frequency

$$B, E \text{ parallel} (\uparrow\uparrow) \qquad \omega_{\uparrow\uparrow} = \frac{2\mu_n |B| + 2d_n |E|}{\hbar}$$

$$B, E \text{ antiparallel} (\uparrow\downarrow) \qquad \omega_{\uparrow\downarrow} = \frac{2\mu_n |B| - 2d_n |E|}{\hbar}$$

$$d_n = \frac{\hbar(\omega_{\uparrow\uparrow} - \omega_{\uparrow\downarrow})}{4|E|}$$

\rightarrow EDM can be obtained from the Larmor frequency of the spin-polarized particle

Larmor frequency measurement by the Ramsey method

- 1. Neutrons are polarized in the direction of B_0 ($B_0 \sim 1 \,\mu T$)
- 2. Apply $\pi/2$ pulse $B_1(@\omega_{RF})$ (application duration $T_{\rm RF}$)
- 3. free precession (time T_0)
- 4. Apply $\pi/2$ pulse $B_1(@\omega_{RF})$ (application duration $T_{\rm RF}$)
- 5. Measure neutron polarization
- Repeat 1.~ 5. to obtain 6. resonance frequency

Principle of UCN spin analyzer

- UCN are polarized by a magnetized iron film
- The effective potential experienced by UCN:

 $V = V_F \pm \mu_n B = 209 \text{ neV} \mp 60.3 \text{ neV/T} \cdot B$

- Fermi potential of Fe: $V_F \sim 209 \,\mathrm{neV}$
- UCN kinetic energy $\lesssim 300 \, neV$
- With ~ 2 T magnetization
 → full separation of the UCN spin states
 → the film can be used as a spin analyzer

Simultaneous Spin Analyzer (SSA)

• Simultaneous Spin Analyzer (SSA)

- Polarization analyzer
- Thin Fe film in a permanent magnet: allows only a specific spin state to transmit
- Simultaneous measurement of UCN in each spin state
 - Selection of the spin state by RF spin flipper
- Measure the polarization from the number of UCN for each spin.

Requirements on the polarization films for the SSA

- Large saturation magnetization (~2 T) (for high efficiency of spin analysis)
- Saturate with a low magnetic field ($\leq 10 \text{ mT}$)
 - Low leakage field
 - Compact device
- Small absorption of UCN

S. Afach, et al, Euro. Phys. Jour. A 51, 143 (2015)

Contents

Introduction

- Ultra Cold Neutron (UCN)
- Neutron Electric Dipole Moment (nEDM)
- TUCAN overview
- Principle of UCN polarization measurement

Development and Evaluation of UCN polarization analyzer films

- Development of UCN polarization analyzer films
- B-H curve measurement by Vibrating Sample Magnetometry (VSM)
- Neutron reflectivity measurement

Conclusions and Outlook

Development of polarization analysis film

Iron thin films were prepared using an ion beam sputtering system (IBS) at KURNS

Produced sample

Iron thin film

• thickness : 30, 50, 90 nm Substrates

- Si (thickness $380 \,\mu m$)
- AI (thickness $25 \,\mu m$)

Hysteresis curve measurement

sample	Hc(Oe)	Hs(Oe)	μοHs(mT)	sample	Hc(Oe)	Hs(Oe)	µ0Hs(m
Si+Fe(30 nm)	16.5	29.8	2.98	AI+Fe(30 nm)	45.0	159	15.9
Si+Fe(50 nm)	16.7	24.5	2.45	$\Lambda \downarrow E_0(00 \text{ nm})$	25.8	13/	13 /
Si+Fe(90 nm)	20.3	45.5	4.55		20.0	104	10.4

- - $\mu_0 H_s \lesssim 5 \text{ mT}$ (Si substrate)
 - $\mu_0 H_s \lesssim 15 \text{ mT}$ (Al substarte)

• BH curves of each sample were measured by Vibrating Sample Magnetometry (VSM) • Samples saturates with low magnetic fields (requirements : $\mu_0 H_s \lesssim 10 \, \mathrm{mT}$)

Neutron reflectometry

- Cold neutrons (wavelength $0.2 \sim 1 \, \rm nm$) are injected to a sample and the reflectivity is measured.
- From the reflectivity profile as a function of wave vector transfer $q = 4\pi \sin \theta_0 / \lambda$, the critical value q_c can be determined.
- From the critical value q_c , the magnetic potential experienced by the neutron can be extracted.

$$V_{\rm eff} = \frac{\hbar^2 q^2}{8m_n}$$

 $(m_n : neutron mass)$

Neutron reflectivity measurement Setup (J-PARC/MLF BL05)

Reflectivity measurement of the sample

Measurement procedure:

- A magnetic field of $-8 \,\mathrm{mT}$ was applied to the sample. (Reset) E B
- The reflectivity *R* was measured while 2. increasing the applied magnetic field.
 - The effective potential was determined from the reflectivity with the spin flipper on and off.

How to extract physical properties of interest:

- The critivcal value q_c of the reflectivity profile R(q) \rightarrow The potential $V_{\rm eff}$ experienced by neutrons at saturation
- From the magnetic field at which the effective potential $V_{\rm eff}$ rises \rightarrow Magnetic field required to saturate the film

2

 $\mathbf{0}$

—1

-2

-3

Neutron reflectivity measurement results

Fe 90 nm + Si substrate (Neutrons incident in each spin states Reflectivity R_{down} , R_{up})

- Fitted with a function which takes into account the beam polarization
- Fitting results

Reflectivity critical value : $q_c = 0.251(9) \text{ nm}^{-1}$

 $\leftrightarrow V_{\text{eff}} = 328.5(4) \,\text{neV}$

(requirements: $V_{\rm eff} > 300 \, {\rm neV} \gtrsim E_{\rm UCN}$) ($E_{\rm UCN}$: U

 \leftrightarrow Fe magnetization 1.980(7) T

when 8 mT is applied

(requirements : $\mu_0 H \lesssim 10 \,\mathrm{mT}$)

 Enough saturation magnetization obtained to polarize UCN at sufficiently low magnetic field

Details are still under analysis.

Contents

Introduction

- Ultra Cold Neutron (UCN)
- Neutron Electric Dipole Moment (nEDM)
- TUCAN overview

- Principle of UCN polarization measurement **Development and Evaluation of UCN polarization analyzer films** Development of UCN polarization analyzer films B-H curve measurement by Vibrating Sample Magnetometry (VSM)
- - Neutron reflectivity measurement

Conclusions and Outlook

Conclusion and outlook

- Development of UCN polarization analyzer for TUCAN
- Reflectivity measurement of the sample (Fe+Si substrate)
 - $V_{\rm eff} \sim 324 \,{\rm neV}$ (requirements: $V_{\rm eff} \gtrsim 300 \,{\rm neV} \gtrsim E_{\rm UCN}$), when 8 mT is applied. (requirements: $\mu_0 {\rm H} \lesssim 10 \,{\rm mT}$)
- Successfully produced films that can be used for UCN polarization analysis
- Evaluation with UCNs are planned in spring 2022.

Acknowledgements

Thank you for your attention!

TUCAN TRIUMF Ultra Cold Advanced

Neutron source

WINNIPEG **WINNIPEG**

