The precision nEDM measurement with UltraCold Neutrons at TRIUMF

Ryohei Matsumiya (TRIUMF/Canada), on behalf of the TUCAN collaboration, SPIN2021 Symposium, Matsue, Japan / Online, 2021/10/22

Outline

- Introduction
- UCN source (TUCAN source) development
- nEDM Spectrometer
- Summary & Future Plan

Neutron Electric Dipole Moment (nEDM)

- nEDM violates the time-reversal (T) symmetry
- lacksquare
- \bullet

intensity UCN source

TUCAN collaboration **TRIUMF UltraCold Advanced Neutron**

- Our goals
 - Build a high-intensity UCN source at TRIUMF
 - Measure the nEDM with 10⁻²⁷ ecm precision
- Expected UCN density
 - 200-400 polarized UCN /cm³ (filled in the EDM cell)
- The UCN production scheme demonstrated by the prototype UCN source
 - First UCN production at TRIUMF in 2017 (S. Ahmed et al., PRC 99 (2019) 025503)
- Current activities
 - Development of a new upgraded UCN source
 - Development of the new EDM spectrometer

TUCAN TRIUMF Ultra Cold Advanced Neutron source

H. Akatsuka, C. Bidinosti, C. Davis, B. Franke, M. Gericke, P. Giampa, S. Hansen-Romu, K. Hatanaka, T. Hayamizu, T. Higuchi, G. Ichikawa, S. Imajo, B. Jamieson, S. Kawasaki, M. Kitaguchi, W. Klassen, A. Konaka, E. Korkmaz, F. Kuchler, M. Lang, M. Lavvaf, L. Lee, T. Lindner, K. Madison, Y. Makida, R. Mammei, J. Mammei, J. W. Martin, R. Matsumiya, M. McCrea, E. Miller, K. Mishima, T. Momose, T. Okamura, O. H. Jin, R. Picker, W. D. Ramsay, W. Schreyer, H. Shimizu, S. Sidhu, I. Tanihata, S. Vanbergen, W. T. H. van Oers, and Y. Watanabe

UCN production scheme in TUCAN Source

- Combination of
 - Spallation neutron source
 - Neutron moderator
 - Super-thermal UCN production with superfluid He (He-II)

Y. Masuda et al, PRL 108 (2012) 134801

- Spallation Neutron Source
 - Fast neutron produced by accelerator driven proton beam impingement on W target
 - 20kW proton beam line (BL1U at TRIUMF Meson hall)
- RT D₂O and 20K liquid deuterium (LD₂) moderator
- Crucial aspects:
 - Keep the He-II temperature at ~1K to suppress upscattering by phonons under a heat load of beam irradiation

TRIUMF (Vancouver, Canada)

UCN experimental area

Beam line 1U - 20kW proton beam line

NIM A 927, 101-108 (2019) Phys. Rev. Accel. Beams 22, 102401 (2019)

UCN production at TRIUMF in 2017

- First UCN production at TRIUMF with a prototype UCN source
- ✦ Major results

(2019)

- Successful UCN production
- 3.25×10⁵ UCN/cycle @10uA proton beam current
- ✦ Beam power was limited by cooling power of the helium cryostat
- ← Higher He-II temperature → larger UCN loss by phonon up scattering in He-II (\propto T⁷)

S. Ahmed et al., Phys. Rev. C 99, 025503

Top view of the prototype UCN source

Design of the new UCN source - TUCAN Source

- ✦ New UCN source (TUCAN source) under development
- ✦ Major improvements
 - Higher cooling power of the He cryostat (0.4 \rightarrow 10W)
 - Enables operation of high beam current (1uA \rightarrow 40uA)

✦ Moderator

- Solid $D_2O \rightarrow Liquid D_2$: increases cold neutron flux around 1meV
- Geometry optimization by MC simulation

W. Schreyer et al., NIM A 959, 163525 (2020)

UCN production

	Prototype UCN source	New UCN source	UCN gai
Beam current	1uA	40uA	×۷
Cold moderator	20K Solid D ₂ O	20K Liquid D ₂	×(2
UCN production volume	8L	27L	×3
Cooling power of He cryostat	0.4W	10W	

 \rightarrow Expected UCN yield: (1.4-1.6) × 10⁷ UCN/s

Overview of the TUCAN apparatus

nEDM Spectrometer

Magnetically Shielded Room

EDM cell

(Spin precession chamber)

Spin analysis & UCN detection

Magnetic potential

$$B = 3.5T \rightarrow -\mu_n \cdot B = \pm 210$$
 ne

Only one state can pass.

Magnetically Shielded Room (MSR)

- Requirements for the nEDM measurement:
 - Shielding factor ~ 10⁵ (@10 mHz or higher)
 - Fields < 1nT, gradient < 100 pT/m in the central (1 m)³ volume
- TUCAN MSR specifications
 - 4-layer mumetal shield
 - Size:
 - Outermost layer: (3.5 m)³
 - Innermost layer : (2.4 m)³
 - Design shielding factor (@10mHz): ~10⁵
 - Confirmed by FEA simulations
 - Currently working on detailed design with the manufacturer (Magnetic Shields Limited)
- Installation planned in May-Oct 2022

EDM cell, magnetometers

EDM cell

- ✦ Electric field simulation
- Prototype EDM cell and valve
 - UCN storage test planned at J-Parc in 2022
- ✦ Coating machine for deposition of dPS
- ✦ High voltage discharge test obtained Paschen's curve
- ✦ Systematics studies

Prototype EDM cell and valve

Coating machine

HV discharge test

Magnetometers

Measuring test field with Cs magnetometer

Cs sensor array simulation

EDM sensitivity

EDM sensitivity:

$$\sigma(d_n) = \frac{\hbar}{2\alpha ET\sqrt{N_0}}$$

- E : Electric field (~10 kV/cm)
- 7 : Free precession time (~100s)
- N_0 : number of UCN (~10⁶)
 - the high-intensity UCN source!
- α : visibility (polarization, relaxation time) (~1)
- For one cycle $\sigma(d_n) \sim 10^{-25}$ ecm

Within 400 days ($\sim 10^5$ cycles): 10^{-27} ecm (TUCAN goal)

- 2022 UCN production
- 2023 UCN Source & nEDM spectrometer commissioning
- 2024 nEDM data-taking & Systematic studies begin

Summary & Future Plan

- The new UCN source (TUCAN source) development
 - The proton beam line was constructed and the prototype UCN source was operated at TRIUMF.
 - He cryostat was tested at Japan and shipped to TRIUMF.
 - UCN production volume is in construction. Installation is planned in 2022 cyclotron shutdown.
 - UCN guides were tested at TRIUMF and J-Parc.
- nEDM spectrometer development
 - UCN polarizer/analyzer were developed.
 - Magnetic field mapping at the experimental area was done. MSR will be installed in May-Oct 2022.
 - EDM cell, magnetometers, guiding fields for UCN polarization conservation etc. are under development.
- Schedule
 - UCN production: planned in 2022.
 - Commissioning of the UCN source and the EDM spectrometer: 2023
 - nEDM data-taking: 2024

Backup slides

insert of the cryostat

HEX7 appearance

He cryostat cooling test

- He cryostat has been developed in Japan.
- Performed cooling tests of the He cryostat at KEK, Japan in 2020

Temperature during Pre-Cooling

- He cryostat was shipped to TRIUMF, Canada in 2021 Summer
- Cooling test at TRIUMF is planned in 2021 Winter

He Cryostat at KEK

Tail section & UCN guide test

- Tail section (UCN production volume, LD₂ vessel)
 - Designed & Built by TRIUMF
 - UCN production volume + UCN guide has been made
 - Waiting for NiP coating
 - UCN storage test at LANL planned in Sep 2021
- LD₂ vessel
 - Mechanical design finished
 - Pursuing companies for outsourcing
- Tail section installation planned in 2022 shutdown
- UCN storage experiments to test NiP coating were performed at LANL (2020) and J-Parc (2021)
 - Tested NiP coating by some companies.
 - NiP coating by DavTech is the best choice

UCN storage lifetime measurement of the NiP coated guide at J-Parc

UCN storage measurement with NiP coated UCN guides Experimental setup at J-Parc

Spin analyzer development

- facility at KURNS M. Hino et al, Nucl. Inst. Meth. A, **797**, 265 (2015)
- B-H curve measured with VSM (vibrating sample magnetometer)
- Performance test using cold neutron reflectometry at J-Parc MLF BL05: in analysis
- Performance test with UCN in the future

Sputtering facility at KURNS

Iron sputtered silicon/aluminum foil (Fe thickness 30, 50, 90nm) produced with the ion beam sputtering

Setup at J-Parc MLF BL05

Spin analyzer development setup at J-Parc

Distance from the concrete shielding exit (mm)

Setup at J-Parc MLF BL05

Magnetic field measurements on-site

- Three-dimensional mapping of the ambient field on the area

Results

T. Higuchi, nEDM2021, 15.02.2021

Recent magnetic field measurements on the TUCAN area in TRIUMF Meson Hall • Monitoring of ambient magnetic field on the area to estimate typical field fluctuations

Saturation risk of the MSR and design of the compensation system

- \blacksquare The background field in the area is up to $\approx 370 \ \mu$ T Produces in-plane B ~ 500 mT in mumetal, x2 around holes Could saturate mumetal near the MSR holes (B_s of mumetal: 700 mT)
- Designing a set of coils which compensate the effects of the background field and guarantee the shielding performance of the MSR

1. MSR placed in a dipole B-field, modeling the cyclotron stray field 3. Coils activated (600, 150, 600 AT): IBI reduced to <150 mT T. Higuchi, nEDM2021, 15.02.2021

2. In-plane IBI of +x plane: up to 400 mT

