muEDM:

Towards a search for the muon electric dipole moment at PSI using the frozen-spin technique

on behalf of the muEDM initiative at PSI

msakurai@phys.ethz.ch

EDM and CP violation

- In the presence of magnetic and electric fields, the interaction Hamiltonian is $H = \overrightarrow{\mu} \cdot \overrightarrow{B} \overrightarrow{d} \cdot \overrightarrow{E}$
- A non-zero particle EDM violates P and T
- Assuming CPT invariance, T violation implies CP violation
- Non-zero EDM detection indicates new source of CP violation from BSM
 → Could provide an explanation for the matter-dominated Universe

Status of EDM searches

• Current limit from BNL g-2: $d_{\mu} < 1.8 \times 10^{-19} e \cdot cm \ (95 \% C \cdot L.)$

- Linear mass scaling with electron EDM limit: $d_e \sim 10^{-29} e \cdot \text{cm} \rightarrow d_\mu \sim 10^{-27} e \cdot \text{cm}$
- However, BSM theories allow a larger value: d_{μ} could be as large as $\sim 10^{-22} e \cdot \mathrm{cm}$
- Moreover, observed tensions with the SM
 - B-decays at LHCb
 - 4.2σ deviation in muon g-2
- Muon EDM can
 - further push EDM searches beyond to 1st generation particles
 - probe the role of the lepton flavour universality

19/10/2021 | The 24th International Spin Symposium, Matsue | Mikio Sakurai

Motivation of muon EDM search

• Muon EDM always has been measured as a by-product in the g-2 storage ring

Muon spin precession in E- and B-fields

$\frac{d\vec{s}}{dt} = -\frac{e}{m} \left[a\vec{B} - \left(a + \frac{1}{1 - \gamma^2} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right] + \frac{e}{m} \left[-\frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$ $\vec{\omega}_a$

- *i*_a: spin precession in orbital plane ("g-2" precession)
- $\vec{\omega}_e$: spin precession out of orbital plane ("EDM" precession)
- EDM causes very tiny tilt of the precession plane $\delta \sim \text{mrad}$ for $d_{\mu} \sim 10^{-19} e \cdot \text{cm}$
- Challenging to measure this tiny angle for detectors
- New idea: Frozen-spin technique

Frozen-spin technique for the muon EDM search

- Cancel "g-2" precession by applying a radial E-field of $E \approx aBc\beta\gamma^2$
- Spin remains parallel on the orbit
- EDM signal is visible as growing vertical polarisation with time

Asymmetry A(t)=(N_f(t)-N_j(t))/(N_f(t)+N_j(t)) 0 5 2 2 2 2 2 2 2 2 2 2 A $A(t) = A_e \sin(\omega_e t + \phi_e)$

The initial slope gives the sensitivity of the measurement:

$$\sigma(d_{\mu}) = \frac{a\hbar\gamma}{2P_0 E_f \sqrt{N}\tau_{\mu}A}$$

 P_0 : Initial polarisation

 E_f : Frozen-spin E-field

N: Number of positrons

 τ_{μ} : Muon life time

A: Mean analysis power

19/10/2021 | The 24th International Spin Symposium, Matsue | Mikio Sakurai

10

15

20

25

Time [us]

 $P_{\mu} = 100\%, N = 5.0 \times 10^{6}$

d_{..} = 1.8×10⁻¹⁷ e⋅cm

5

 χ^2 / ndf

Prob

Ae

ω_e

133.1 / 147

 0.1666 ± 0.0010

0.1896 ± 0.0011 -0.006392 ± 0.004494

0.7877

EDM signal

Upper detector

Lower detector

Concept for muon EDM search at PSI A. Adelmann et al., JPG 37 (2010) 085001

Original storage ring idea in 2010 + vertical beam injection inspired by J-PARC g-2/EDM

- signal in SC channel guides muons on to a stable orbit (> 50 ns)
- Store single muon at a time
- Muon tagger for track ID

uniform 3 T-field

- Positron tracker made of CMOS pixel detector
- Scintillator gives a fast "end" signal
- Calorimeter for energy resolution

19/10/2021 | The 24th International Spin Symposium, Matsue | Mikio Sakurai

H. linuma et al., NIMA 832 (2016) 51-62 A. Adelmann et al., arXiv:2102.08838 [hep-ex]

Gamma factor (p = 125 MeV/c)	γ	1.77
Initial polarisation	P_0	93%
Frozen-spin E-field ($B = 3 T$)	E_{f}	2 MV/m
Detection rate		60 kHz
Mean analysis power	Α	0.3
#positon detections (200 days)	N	10 ¹²
$\sigma = a\hbar\gamma/(2P_0E_f\sqrt{N}\tau_\mu A)$	<	$6 \times 10^{-23} e \cdot cm$

Potential beamlines for the muEDM search

- Possible scenario: 2 phase approach using the same experimental setup
- Phase I: precursor experiment @πE1 beamline
 → Phase II: ultimate sensitivity @µE1 beamline
- πE1 beamline
 - MuSun, muCool, muX
 - Precursor experiment with 28 MeV/c µ⁺ beam
 → 10⁻²² e•cm is reachable
- µE1 beamline
 - µSR beamline
 - Final data taking with 125 MeV/c μ^+ beam
- Beamline characterisation was performed in 2019 to obtain input parameters for simulations and injection study

10

Characterisation of the beamlines

11

10

y [mm]

Vertical Phase Space @SciFi

-80

-100

-5

0

5

10

15 y [mm]

-10

- Quadrupole scan technique was used to determine phase space Horizontal Phase Space @SciFi
- 001 [mrad] 08 [100 [mrad] 80 πE1 @28 MeV/c (Precursor) α = -0.214526 α **= -0.238857** β = 0.283628 [m] β = 0.900838 [m] 60 60 ∈= 197.735 [mm·mrad] ∈= 171.301 [mm·mrad 40 - R_{μ} up to 6.6 × 10⁶ μ +/s @2.4 mA 20 20 0 0 - Emittance (1σ) -20 -20 -40 -40 H: 198 mm•mrad -60 -60 V: 171 mm•mrad -80 -80 -100 6 o x [mm] -5 -10 5 µE1 @125 MeV/c (Final data taking) Horizontal Phase Space @SciFi Vertical Phase Space @SciFi 00 [mrad] 00 [mrad] $\alpha = -1.38453$ - R_{μ} up to 1.2 × 10⁸ μ +/s @2.4 mA $\alpha = 1.93749$ β = 1.1288 [m] β = 0.379402 [m] 60 60 -∈= 945.522 [mm·mrad] ∈= 716.426 [mm·mrad] 40 40 Emittance (1σ) 20 20 H: 945 mm•mrad 0 0 -20 -20 V: 716 mm•mrad -40 -40 -60 -60 - P~93%

19/10/2021 | The 24th International Spin Symposium, Matsue | Mikio Sakurai

-80

-30

-100

-10

0

10

20

30

x [mm

-20

- At low momenta, tracking resolution would be dominated by multiple scattering in materials
- Influence the design of the positron tracking scheme
- Good understanding of the multiple scattering in potential detector materials is important
- MALTA CMOS pixel detector
 - MAPS designed in TowerJazz 180 nm technology
 - Matrix of 512 \times 512 pixels Pixels of 36.4 \times 36.4 μm^2
 - Active area: $18.3 \times 18.3 \text{ mm}^2$
 - Our sensor thickness: ~300 µm

Multiple scattering in potential detector materials 13

- Studied multiple scattering of positrons at low momenta with using 3-plane MALTA telescope
- e+: 20 85 MeV/c
- Measured samples: MALTA (Si 307 µm), Kapton/Mylar 500 µm
- Only accept events which has exactly 1 pixel hit per plane and calculate angle based on those 3 points
- A good description of measurements by Geant4 for the RMS of the central 98% of the distribution

Tentative schedule

- Several R&D studies are underway for the full experimental proposal submission to PSI
- Aim to start data taking in 2027

	2021	. 2022	2023	2024	2025	2026	2027	2028	2029	2030
Conceptional design	•	•								
Technical design										
R&D			•							
Construction					2					
Commissioning										
Data taking						3				
Analysis						•			4	
Preparation phase II									•	
Phase II at HIMB/muCool								beyond 20	30	ļ

Conclusion

- The search for the muon electric dipole moment is a unique opportunity to explore CP violation in BSM physics
- The first dedicated muon EDM search at PSI using the frozen-spin technique aims to achieve a sensitivity of better than $d_{\mu} < 6 \times 10^{-23} e \cdot \text{cm}$ with existing beamlines
- Several R&D studies are underway at PSI in preparation for the experiment
 - Beam characterisation of the potential beamlines at PSI
 - Study of multiple scattering of positrons at low momenta
- With advent of HIMB and muCool at PSI, an even higher sensitivity can be achieved in Phase II of the experiment

Thank you!

The muEDM initiative at PSI

A. Adelmann,^{1,2} M. Backhaus,¹ C. Chavez Barajas,³ N. Berger,⁴ T. Bowcock,³ A. Bravar,⁵ C. Calzolaio,²
L. Caminada,^{2,6} G. Cavoto,⁷ R. Chislett,⁹ A. Crivellin,^{2,6,10} M. Daum,² M. Fertl,¹¹ M. Giovannozzi,¹⁰ W.C. Griffith,¹²
G. Hiller,¹³ G. Hesketh,⁹ M. Hildebrandt,² I. Keshelashvili,¹⁴ A. Keshavarzi,¹⁴ K.S. Khaw,^{16,17} K. Kirch,^{1,2} A. Kozlinsky,⁴
A. Knecht,² M. Lancaster,¹⁵ B. Märkisch,¹⁸ F. Meier Aeschbacher,² F. Méot,¹⁹ A. Nass,¹¹⁴ A. Papa,^{2,20} J. Pretz,^{14,21}
J. Price,³ F. Rathmann,¹⁴ F. Renga,^{7,8} M. Sakurai,¹ <u>P. Schmidt-Wellenburg</u>,² A. Schöning,²² M. Schott,^{4,11} C. Voena,^{7,8}
J. Vossebeld,³ F. Wauters,⁴ and P. Winter²³

