Nucleon EDM from polarized DIS

Yoshitaka Hatta

Brookhaven National Laboratory RIKEN BNL Research Center

Based on 2009.03657 (PRD), 2012.01865 (PLB)

Spin 2021, 18-22 October 2021

Nucleon electric dipole moment (EDM)

If nonvanishing, CP is violated. EDM is a vector, must be proportional to nucleon spin

CKM mechanism gives too small values of nucleon EDM, much smaller than the current experimental upper bound

 \rightarrow CP violation from BSM physics?

Can high energy ep colliders help, especially the Electron-Ion Collider(EIC)?

Chromoelectric dipole moment from higher-twist PDF

Seng (2018)

Chiral-odd twist-three parton distribution function (PDF)

$$e(x) = \int \frac{dz^-}{2\pi} e^{ixP^+z^-} \langle P|\bar{\psi}(0)\psi(z^-)|P\rangle$$

Accessible in DIS, beam spin asymmetry in

$$e + p \rightarrow e' + \pi^+ + \pi^- + X$$

First moment = Nucleon sigma-term $\langle P|\bar{\psi}\psi|P\rangle$ \rightarrow Dark matter coupling

Third moment may be related to **Quark chromomagnetic dipole moment**

$$\langle P|\bar{\psi}F^{\mu\nu}\sigma_{\mu\nu}\psi|P\rangle$$

 \rightarrow CP-violating nucleon-pion couplings

Weinberg operator (1989)

$$\mathcal{O}_W = g f_{abc} \tilde{F}^a_{\mu\nu} F^{\mu\alpha}_b F^{\nu}_{c\alpha}.$$

CP-odd, dimension-6, scalar gluonic operator.

Induced in the QCD Lagrangian by physics beyond the Standard Model (BSM)

$$\mathcal{L}_{eff} = w \int d^4 x \mathcal{O}_W(x)$$

Want to calculate the proportionality constant in nucleon EDM

$$d_{n,p} \propto u$$

Weinberg operator contribution to EDM

There are two types of diagrams, 1-nucleon reducible and irreducible

Bigi, Uraltsev (1991)

1-nucleon reducible

irreducible

Reducible contribution

$$d_n \sim \mu_n \frac{\langle p' | w \mathcal{O}_W | p \rangle}{m_N \bar{u}(p') i \gamma_5 u(p)}$$

QCD sum rule Demir, Pospelov, Ritz (2003) Haisch, Hala (2019)

Connecting to DIS observable YH (2020) ← this talk

Irreducible contribution

Quark model Instanton

Yamanaka, Hiyama (2020) Weiss (2021)

The proton spin problem

The proton has spin ½.

The proton is not an elementary particle.

$\Delta\Sigma$ from polarized DIS

Longitudinal double spin asymmetry

$$A_{LL} = \frac{\mu^{\uparrow} p^{\downarrow} - \mu^{\uparrow} p^{\uparrow}}{\mu^{\uparrow} p^{\uparrow} + \mu^{\uparrow} p^{\downarrow}}$$
$$\sim \left(1 + \frac{\sigma_L}{\sigma_T}\right) \frac{2xg_1}{F_2}$$

$$\frac{\mu^{-}}{\gamma^{*}} q^{2} = -Q^{2}$$

$$p \xrightarrow{\gamma^{*}} X$$

$$\int_{0}^{1} g_{1}^{p,n}(x,Q^{2}) dx$$

$$= (\pm \frac{1}{12}g_{A} + \frac{1}{36}a_{8})(1 - \frac{\alpha_{s}}{\pi} + \mathcal{O}(\alpha_{s}^{2})) + \frac{1}{9}\Delta\Sigma (1 - \frac{33 - 8N_{f}}{33 - 2N_{f}}\frac{\alpha_{s}}{\pi} + \mathcal{O}(\alpha_{s}^{2}))$$

$$- \frac{8}{9Q^{2}} \Big[\{\pm \frac{1}{12}f_{3} + \frac{1}{36}f_{8}\} \left(\frac{\alpha_{s}(Q_{0}^{2})}{\alpha_{s}(Q^{2})} \right)^{-\frac{\gamma_{NS}^{0}}{2\beta_{0}}} + \frac{1}{9}f_{0} \left(\frac{\alpha_{s}(Q_{0}^{2})}{\alpha_{s}(Q^{2})} \right)^{-\frac{1}{2\beta_{0}}(\gamma_{NS}^{0} + \frac{4}{3}N_{f})} \Big],$$

Last line is called `higher twist' corrections, usually a nuisance when extracting $\Delta\Sigma$

An operator identity

Start from an exact identity YH, 2009.03657

$$gf_{abc}\tilde{F}^{a}_{\mu\nu}F^{\mu\alpha}_{b}F^{\nu}_{c\alpha} = -\partial^{\mu}(\tilde{F}_{\mu\nu}\overleftrightarrow{D}_{\alpha}F^{\nu\alpha}) - \frac{1}{2}\tilde{F}_{\mu\nu}\overleftrightarrow{D}^{2}F^{\mu\nu}$$
$$\overleftrightarrow{D}_{\alpha} = \frac{D_{\alpha}-\overleftarrow{D}_{\alpha}}{2}$$

Take the off-forward matrix element

$$\langle p' | \mathcal{O}_W | p \rangle = -i\Delta^{\mu} \langle p' | \tilde{F}_{\mu\nu} \overleftrightarrow{D}_{\alpha} F^{\nu\alpha} | p \rangle + \cdots$$

$$\approx i\Delta^{\mu} \langle p | \bar{\psi} g \tilde{F}_{\mu\nu} \gamma^{\nu} \psi | p \rangle + \cdots$$

$$\Delta^{\mu} = p'^{\mu} - p^{\mu}$$

This matrix element is familiar to experts of QCD spin! Shuryak, Vainshtein (1982)

$$\langle p|\bar{\psi}g\tilde{F}_{\mu\nu}\gamma^{\nu}\psi|p\rangle = -f_0M^2S^{\mu}$$

$\Delta\Sigma$ from polarized DIS

Longitudinal double spin asymmetry

$$A_{LL} = \frac{\mu^{\uparrow} p^{\downarrow} - \mu^{\uparrow} p^{\uparrow}}{\mu^{\uparrow} p^{\uparrow} + \mu^{\uparrow} p^{\downarrow}}$$
$$\sim \left(1 + \frac{\sigma_L}{\sigma_T}\right) \frac{2xg_1}{F_2}$$

$$\begin{split} &\int_{0}^{1} g_{1}^{p,n}(x,Q^{2}) dx & ; \\ &= (\pm \frac{1}{12} g_{A} + \frac{1}{36} a_{8})(1 - \frac{\alpha_{s}}{\pi} + \mathcal{O}(\alpha_{s}^{2})) + \frac{1}{9} \Delta \Sigma (1 - \frac{33 - 8N_{f}}{33 - 2N_{f}} \frac{\alpha_{s}}{\pi} + \mathcal{O}(\alpha_{s}^{2})) \\ &- \frac{8}{9Q^{2}} \Big[\{\pm \frac{1}{12} f_{3} + \frac{1}{36} f_{8} \} \left(\frac{\alpha_{s}(Q_{0}^{2})}{\alpha_{s}(Q^{2})} \right)^{-\frac{\gamma_{NS}^{0}}{2\beta_{0}}} + \int_{\Sigma} \int_{0}^{\alpha_{s}(Q_{0}^{2})} \frac{\alpha_{s}(Q_{0}^{2})}{\alpha_{s}(Q^{2})} \Big]^{-\frac{1}{2\beta_{0}}(\gamma_{NS}^{0} + \frac{4}{3}N_{f})} \Big], \end{split}$$

Last line is called `higher twist' corrections, usually a nuisance when extracting $\Delta\Sigma$

Operator mixing

Choose

$$\mathcal{O}_W = g f_{abc} \tilde{F}^a_{\mu\nu} F^{\mu\alpha}_b F^{\nu}_{c\alpha}$$
$$\mathcal{O}_4 = -\partial^\mu (\tilde{F}_{\mu\nu} \overleftrightarrow{D}_\alpha F^{\nu\alpha}) \approx \partial^\mu (\bar{\psi} g \tilde{F}_{\mu\nu} \gamma^\nu \psi)$$

as the basis of operators and study their mixing under RG.

RG equation*
$$\frac{d}{d\ln\mu^2} \begin{pmatrix} \mathcal{O}_W \\ \mathcal{O}_4 \end{pmatrix} = -\frac{\alpha_s}{4\pi} \begin{pmatrix} \gamma_W & \gamma_{12} \\ 0 & \gamma_4 \end{pmatrix} \begin{pmatrix} \mathcal{O}_W \\ \mathcal{O}_4 \end{pmatrix}$$
$$\gamma_W = \frac{N_c}{2} + n_f + \frac{\beta_0}{2} = \frac{7}{3}N_c + \frac{2}{3}n_f \quad \text{Morozov (1983)}$$
$$\gamma_4 = \frac{8}{3}C_F + \frac{2}{3}n_f. \quad \text{Shuryak, Vainshtein (1982)}$$

* Here I neglect the mixing with the chromoelectric operator $\, m ar{\psi} g F_{\mu
u} \sigma^{\mu
u} \gamma_5 \psi$

Off-diagonal component

Eigenvector of RG-evolution

$$\mathcal{O}_W + \frac{\gamma_{12}}{\gamma_W - \gamma_4} \mathcal{O}_4 = \mathcal{O}_W - \frac{9N_c^2}{3N_c^2 + 4} \mathcal{O}_4$$

At large RG scales,
$$\langle \mathcal{O}_W \rangle \approx \frac{9N_c^2}{3N_c^2 + 4} \langle \mathcal{O}_4 \rangle \approx 1.31 \langle \mathcal{O}_4 \rangle$$

approaching this limit from below

An estimate of EDM

YH, 2012.01865

$$d \sim \mu \frac{\langle p' | w \mathcal{O}_W | p \rangle}{m_N \bar{u}(p') i \gamma_5 u(p)}$$

Define
$$\langle p' | \mathcal{O}_W | p \rangle = 4m^3 E \bar{u}(p') i \gamma_5 \bar{u}(p)$$

Vary E in the window

total magnetic moment

 $0.5f_0 < E < 1.3f_0$

 f_0 from instanton model. Balla, Polyakov, Weiss (1998)

 $-12w' e MeV < d_p < -32w' e MeV$ $22w' e MeV < d_n < 8.4w' e MeV$

Factor 4~5 smaller than an estimate based on QCD sum rule Haisch, Hala (2019)

 $d_p = -109(1 \pm 0.5) e \text{ MeV}, \qquad d_n = 74(1 \pm 0.5) e \text{ MeV}.$

Comparable to the contribution from irreducible diagrams Yamanaka, Hiyama (2020)

Measuring f_0 at the future Electron-Ion Collider

$$\begin{split} &\int_{0}^{1} g_{1}^{p,n}(x,Q^{2}) dx \\ &= (\pm \frac{1}{12} g_{A} + \frac{1}{36} a_{8})(1 - \frac{\alpha_{s}}{\pi} + \mathcal{O}(\alpha_{s}^{2})) + \frac{1}{9} \Delta \Sigma (1 - \frac{33 - 8N_{f}}{33 - 2N_{f}} \frac{\alpha_{s}}{\pi} + \mathcal{O}(\alpha_{s}^{2})) \\ &- \frac{8}{9Q^{2}} \Big[\{\pm \frac{1}{12} f_{3} + \frac{1}{36} f_{8} \} \left(\frac{\alpha_{s}(Q_{0}^{2})}{\alpha_{s}(Q^{2})} \right)^{-\frac{\gamma_{NS}^{0}}{2\beta_{0}}} + \frac{1}{9} f_{0} \left(\frac{\alpha_{s}(Q_{0}^{2})}{\alpha_{s}(Q^{2})} \right)^{-\frac{1}{2\beta_{0}}(\gamma_{NS}^{0} + \frac{4}{3}N_{f})} \Big], \end{split}$$

+ target mass corrections

Exploit the large Q^2 leverage at the EIC to isolate the $1/Q^2$ (twist-4) terms.

 f_3 can be eliminated by taking the flavor singlet combination.

Separating f_0 from f_8 will be hard in practice. One may estimate f_8 by other means.

Conclusions

- Novel connection between high energy QCD spin and BSM physics.
- A nice addition to the already rich spin program at the future Electron-Ion Collider (EIC). Make the most of EIC's unique capabilities.