

THE SEARCH FOR ELECTRIC DIPOLE MOMENTS OF CHARGED PARTICLES USING STORAGE RINGS

19.10.2021

INTERNATIONAL SPIN SYMPOSIUM - SPIN2021
VERA SHMAKOVA FOR THE JEDI COLLABORATION

MATTER-ANTIMATTER ASYMMETRY

Why is our universe is matter dominated?

Big Bang produced same amount of matter – antimatter

Experiment:

V. Barger, et al, Phys.Lett.B566, 8 (2003)

 $\frac{n_b - n_{\bar{b}}}{2} \sim 10^{-10}$

 n_{γ}

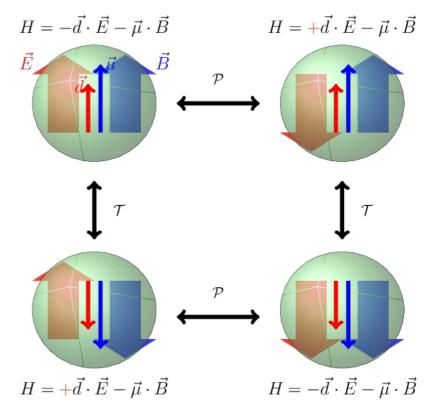
Expectation from SCM:

W. Bernreuther, Lect. Notes Phys.591, 237 (2002)

$$\frac{n_b - n_{\bar{b}}}{n_v} \sim 10^{-18}$$

Preference of matter (A. Sakharov criteria, 1967)

There is *CP* violation in SM, but not sufficiently large


ELECTRIC DIPOLE MOMENT

EDM violates both T, P symmetries

EDM violates CP symmetry (if CPT conserved)

EDM is a probe for CP violation beyond the SM

CHARGED PARTICLE EDM

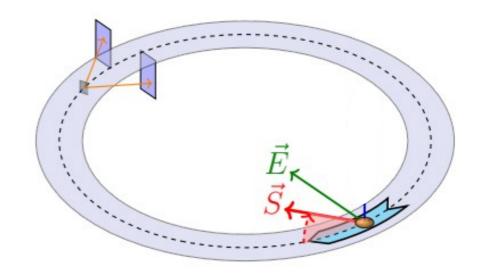
- No direct measurement for charged hadron EDMs
- Potentially higher sensitivity for charged hadrons (compared to neutrons):
 - longer lifetime
 - more stored polarized protons/deuterons
 - can apply larger electric fields in storage rings
- Complementary to neutron EDM
 - EDM of single particle type not sufficient to identify CPV source

EDM AT STORAGE RINGS

THOMAS - BMT EQUATION:

EDM AT STORAGE RINGS

THOMAS - BMT EQUATION:


$$\frac{d\vec{S}}{dt} = [\vec{\Omega}_{MDM} - \vec{\Omega}_{cycl} + \vec{\Omega}_{EDM}] \times \vec{S}$$

$$\vec{\Omega}_{MDM} - \vec{\Omega}_{cycl} = -\frac{q}{m} \{\vec{C}\vec{B} - (G - \frac{1}{y^2 - 1}) \frac{\vec{\beta} \times \vec{E}}{c}\} \qquad \qquad \vec{\Omega}_{EDM} = -\frac{\eta q}{2 mc} \{\vec{E} + c \vec{\beta} \times \vec{B}\}$$

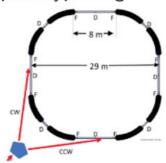
"Frozen spin": in the absence of EDM spin stay aligned to momentum

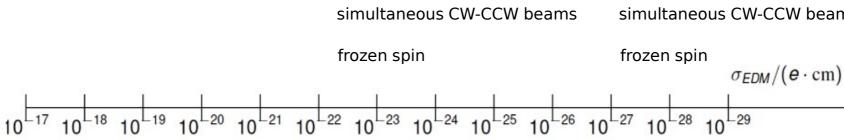
In case of purely electric ring:

- magnetic field is absent
- momentum is chosen that term $(G \frac{1}{y^2 1}) = 0$
- radial electric field causes the spin to precess out of the plane linearly

EDM FOR CHARGED PARTICLE IN 3 STAGES

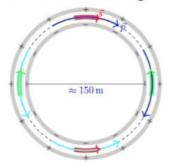
Stage 1


precursor experiment


pure magnetic ring

Stage 2

prototype ring


combined E/B ring

Talk of Joerg Pretz, 18.10.2021

Stage 3

dedicated storage ring

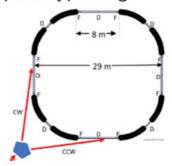
all electric proton ring

simultaneous CW-CCW beams

^{*} F. Abusaif et al., "Storage Ring to Search for Electric Dipole Moments of Charged Particles - Feasibility Study," 2020.https://arxiv.org/abs/1912.07881

EDM FOR CHARGED PARTICLE IN 3 STAGES

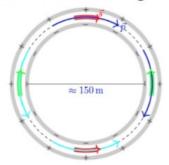
Stage 1


precursor experiment

pure magnetic ring

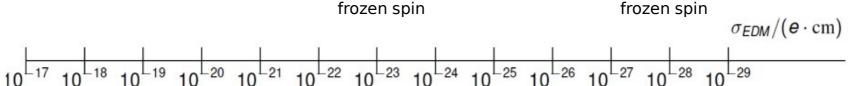
Stage 2

prototype ring


combined E/B ring

simultaneous CW-CCW beams

frozen spin


Stage 3

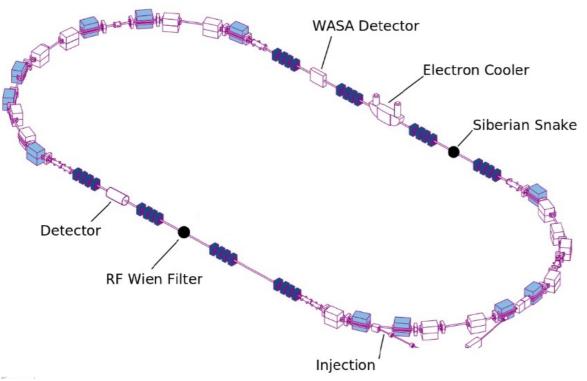
dedicated storage ring

all electric proton ring

simultaneous CW-CCW beams

Talk of Joerg Pretz, 18.10.2021

This talk: precursor experiment, with a magnetic ring COSY


^{*} F. Abusaif et al., "Storage Ring to Search for Electric Dipole Moments of Charged Particles - Feasibility Study," 2020.https://arxiv.org/abs/1912.07881

PRECURSOR EXPERIMENT AT COSY

COSY (Jülich, Germany)

- magnetic storage ring
- polarized protons and deuterons
- Momenta p = 0.3 3.7 GeV/c

Starting point for EDM measurement

EDM AT MAGNETIC RING

THOMAS - BMT EQUATION:

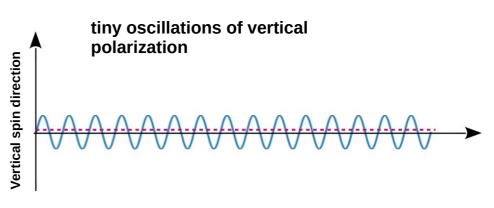
$$\frac{d\vec{S}}{dt} = [\vec{\Omega}_{MDM} - \vec{\Omega}_{cycl} + \vec{\Omega}_{EDM}] \times \vec{S}$$

$$\vec{\Omega}_{MDM} - \vec{\Omega}_{cycl} = -\frac{q}{m} \{G\vec{B} - (G - \frac{1}{\gamma^2 - 1})\vec{\beta} \times \vec{E}\}$$

$$\vec{\Omega}_{EDM} = -\frac{\eta q}{2mc} \vec{E} + c \vec{\beta} \times \vec{B}\}$$

MDM causes fast spin precession in horizontal plane

In pure magnetic ring motional electric field term $(c \vec{\beta} \times \vec{B})$

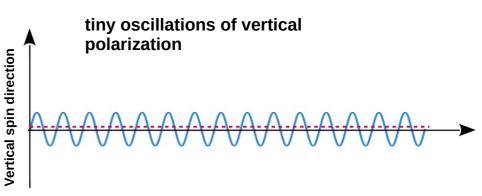


access to EDM

RF WIEN FILTER

In the magnetic ring
momentum ↑↑ spin ⇒ spin kicked up
momentum ↑↓ spin ⇒ spin kicked down
no accumulation of vertical asymmetry

RF WIEN FILTER



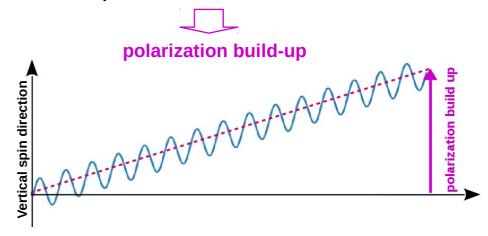
In the magnetic ring

momentum ↑↑ spin ⇒ spin kicked up

momentum ↑↓ spin ⇒ spin kicked down

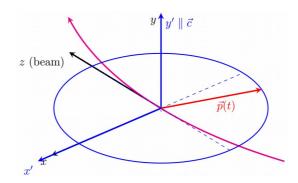
no accumulation of vertical asymmetry

RF Wien filter


Heberling, Hölscher and J. Slim

J. Slim et al. Nucl. Instrum. Methods Phys. Res. A 828, 116 (2016)

- Lorentz force $\vec{F}_L = q(\vec{E} + \vec{v} \times \vec{B}) = 0$
- $\vec{B} = (0, B_v, 0)$ and $\vec{E} = (E_x, 0, 0)$


phase lock between spin precession and RF Wien filter

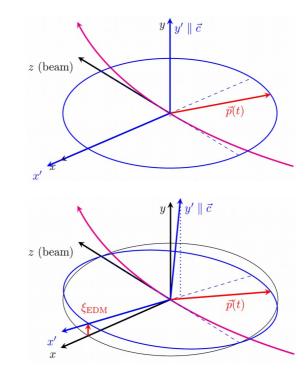
EFFECT ON INVARIANT SPIN AXIS

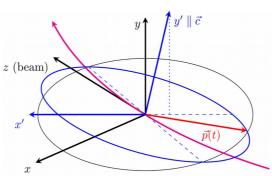
EDM absent

Spin vector that is invariant under one turn spin transfer matrix is called the invariant spin axis

$$T(\theta+2\pi,\theta)=e^{-i\pi G \gamma \hat{n}_o \vec{\sigma}}$$

For an ideal ring (closed orbit), and w/o EDM effect, invariant spin axis is along the direction of the guiding field

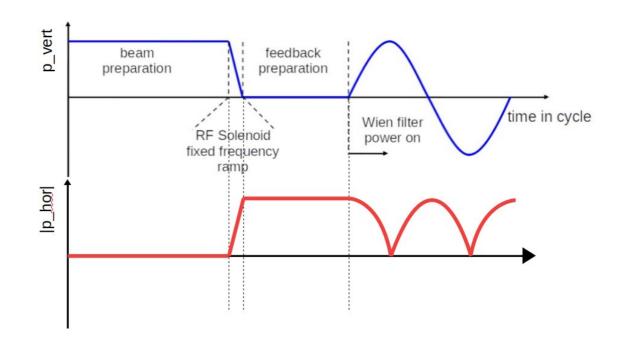

EFFECT ON INVARIANT SPIN AXIS



EDM absent

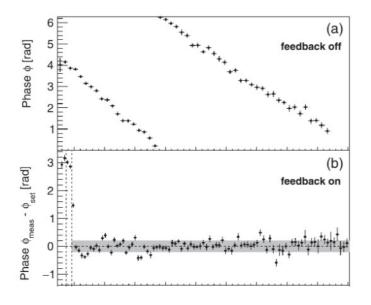
Pure EDM effect

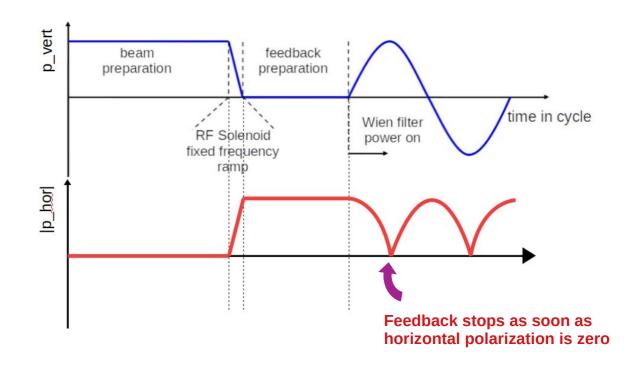
EDM + magnetic misalignments



PRINCIPLE OF MEASUREMENTS

- Coherent ensembles in ring plane spin coherence time has to be longer then a measurement
- Spin precesses with 120 kHz.
- Wien filter operates on resonance f = f_{COSY} + f_{spin pres} = 871.430 kHz
- Phase lock between spin precession and Wien filter


Feedback: the basic workflow


PRINCIPLE OF MEASUREMENTS

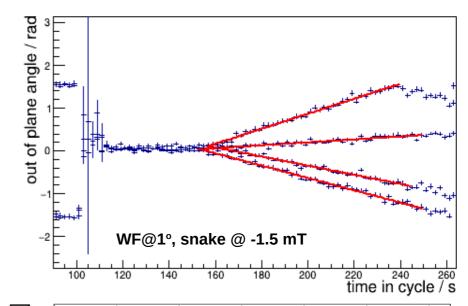
- Feedback monitors spin precession phase and adjust WF frequency to maintain the relative phase between spin precession and Wien filter
- Adjustment uncertainty of 0.2 rad

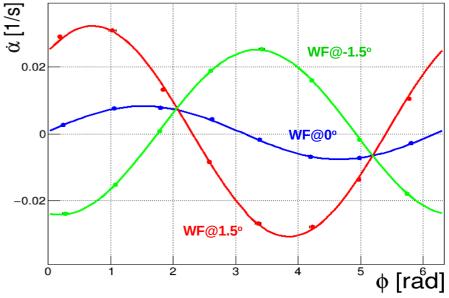
Feedback: the basic workflow

Hempelmann, N., Phys. Rev. accel. and beams, 21(4), 042002 (2018)

PRECURSOR RUN I

Precursor experiment I November 2018:


Study dependence of $\alpha(t)$ slope on the phase ϕ between WF and the spin precession


$$\alpha(t) = \arctan\left(\frac{P_y}{P_{xz}}\right)$$

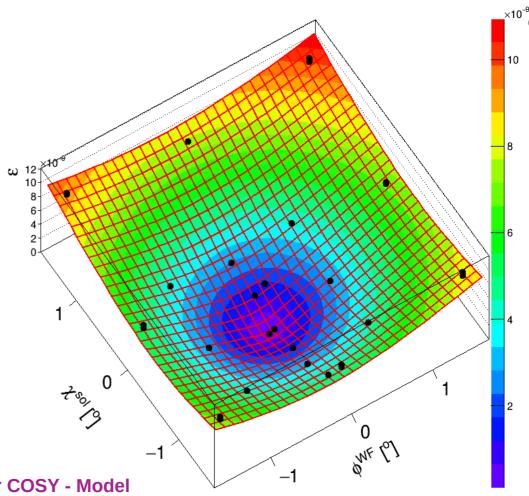
Wien filter is physically rotated about the beam axis

Additional spin kick from a solenoid elsewhere in the ring

Amplitude depends on the WF rotation and the solenoid kick

PRECURSOR RUN I

Parametric resonance strength based on initial slope


$$\varepsilon^{EDM} = \frac{\Omega^{P_{Y}}}{\Omega^{rev}}$$

Minimum of the surface shows orientation of precession axis:

$$\phi_0^{\text{wf}}$$
 = -3.42 +- 0.06 mrad

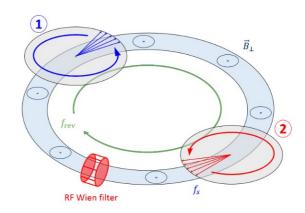
$$X_0^{sol} = -5.26 + -0.04 \text{ mrad}$$

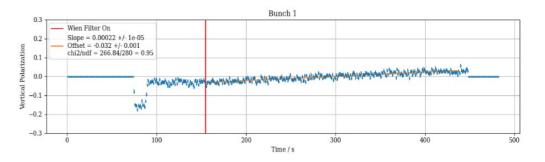
Orientation of precession axis without EDM will come out of spin tracking calculations

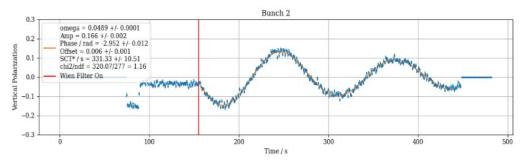
M. Vitz - Orbit Response Matrix Analysis for COSY - Model Optimization using LOCO, 18/10/2021, 21:20

LIST OF IMPROVEMENTS

- Alignment campaigns of COSY magnet system
- Beam-based alignment
 PhD thesis T. Wagner
 talk of Tim Wagner 19/10/2021, 21:20
- New tool for fast tune and chromaticity measurement *P. Niedermayer and B. Breitkeutz*
- Slow control system
 I. Bekman and IKP4
- COSY signals and distribution was improved K. Laihem
- Rogowski coils at the Wien filter place PhD thesis F. Abusaif
- New JEDI polarimeter
 I. Keshelashvili and the polarimeter group
 talk of Otari Javakhishvili 19/10/2021, 21:00


PRECURSOR RUN II




Gating of the bunch:

- 8 high-speed RF switches to gate the WF power for one of two bunches
- Capable of short switch time ~ few ns

- Bunch 2 feels the power and oscillate
- Bunch ① is used as pilot bunch for phase locking

SUMMARY

- Charged hadron EDMs: Possibility to find sources of CP violation and to explain matter-antimatter asymmetry in the universe.
- Precursor experiments performed as a proof of principle of EDM measurement at storage rings. Analysis of data ongoing.
- New method of managing the polarization for one of two bunches in the ring was developed and performed
- CERN Yellow Report prepared by CPEDM collaboration
 F. Abusaif et al., "Storage Ring to Search for Electric Dipole Moments of Charged Particles - Feasibility Study," 2020 https://arxiv.org/abs/1912.07881
- COSY remains a unique facility for such studies.