

Muon g-2/EDM Experiment at J-PARC

Yusuke Takeuchi (Kyushu University) for the J-PARC muon g-2/EDM collaboration

Oct. 20th, 2021 the 24th International Spin Symposium

Muon g-2 and EDM

- One of the best probes for New Physics (NP) beyond the SM.
- Anomalous magnetic moment (g-2) of muon : a_{μ}
 - Calculated in 0.37 ppm precision in the SM.
 - (Phys. Rep. 887 (2020) 1-166)
 - The best experimental precision is 0.46 ppm by the FNAL E989 Experiment.
- The experimental average value deviates from the SM prediction by 4.2σ .
- This deviation may be the result of physics beyond the SM.
- Electric dipole moment (EDM) of muon : $d_{\boldsymbol{\mu}}$
 - If non-zero EDM exists, it means T-violation.
 - Current experimental limit for muon is $|d_{\mu}| < 1.8 \times 10^{-19} \text{ e} \cdot \text{cm}$ by the BNL E821 experiment.
 - (Phys. Rev. D 80, 052008 (2009))
 - The SM expectation of muon EDM is $^{2}\times10^{-38}$ e·cm.
 - Some theoretical models beyond the SM predict much larger values, current experimental technique would reach that values.

g: the Landé g-factor η : a corresponding factor for the EDM

Experimental approach

Experimental approach

"Magic momentum" p = 3.09 GeV/c $\vec{\omega} = \vec{\omega}_a + \vec{\omega}_n$ $= -\frac{e}{m_{\mu}} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} - \frac{\vec{E}}{c} \right) \right]$ **BNL/FNAL** $\gamma = 29.3$ $= -\frac{e}{m_{\mu}} \left| a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} - \frac{E}{c} \right) \right|$ **FNAL E989**

Eliminate the $\beta \times E$ term for simplification.

KYUSHU

p= 3.09 GeV/c , B=1.45 T electric focusing

• In the BNL and FNAL experiments, to use a beam focusing electric field, the muon momentum is chosen to satisfy $\left(a_{\mu} - \frac{1}{\gamma^2 - 1}\right) = 0.$

Experimental approach

Eliminate the $\beta \times E$ term for simplification. \Rightarrow E = 0 with low-emittance muon beam $\vec{\omega} = \vec{\omega}_a + \vec{\omega}_n$ $= -\frac{e}{m_{\mu}} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \cdot \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} - \frac{\vec{E}}{c} \right) \right]$ **J-PARC** E = 0 at any γ $= -\frac{e}{m_{\mu}} \Big[a_{\mu} \vec{B} + \frac{\eta}{2} \big(\vec{\beta} \times \vec{B} \big) \Big]$ J-PARC E34

5

 $p{=}\;300\;MeV/c$, $B{=}3\;T$ no electric field

- In the J-PARC experiment, the electric field itself is eliminated, E = 0.
- Use of a reaccelerated thermal muon beam is a key of this method.

J-PARC Facility

Japan Proton Accelerator Research Complex (J-PARC)

experiment will be conducted here.

J-PARC muon g-2/EDM experiment W KYUSHU

Features:

- Low-emittance muon beam
- No strong focusing
- Compact storage ring
- Full tracking detector

Completely different from BNL/FNAL method

Muon beamline (H-line) 🎬 KYUSHU

Thermal muon production W KYUSHU

- Surface muon beam is stopped at a target and muonium (bound state of μ⁺ and e⁻) is produced.
- Laser-ablated silica aerogel is used for muonium production target.
- An electron is stripped from a muonium by intense laser and thermal muon beam is produced.

 Various laser-ablated structures and aerogel materials were studied.

PTEP2020, 123C01

Muon acceleration

- Thermal muon is accelerated up to p=300 MeV/c in LINAC.

The World's 1st

L= 3.2 m

acceleration of µ (in Mu⁻) by RFQ in 2018.

•

 Acceleration of thermal μ using RFQ in 2022.

The prototype of IH-DTL is being tested.

16 m (14 tanks)

1.4 m

 Real one: to be fabricated in FY2021.

10 m (4 modules) To

- Total 40 m
- The 1st tank of DAW-CCL: to be fabricated in 2021 FY.
- Finalizing design of DLS in FY2021.

Injection

- A three-dimensional spiral injection scheme for beam • insertion into a solenoidal storage ring (SR) is newly developed. Upper plate
- 2D injection is quite difficult for our SR.
- Required kick is too fast and big due to its compactness.
- \Rightarrow A 3D injection scheme is needed.

A proof-of-principle experiment using electron beam is going well.

Wire scan in vertical direction

Storage magnet

• The low-emittance muon beam frees us from magic momentum and enables us to use more precise and compact magnet.

Positron tracking detector

- A 3 T MRI-type compact (φ 66 cm) solenoid magnet will be used to store a muon beam.
- Local uniformity of field < 1 ppm is expected.
- Shimming studies are going well using magnet for MuSEUM experiment.
- < 0.2 ppm at 1.2 T is established

• Development of NMR probe & field mapping system is also ongoing.

Positron tracking detector 3 KYUSHU

13

- Positrons from decay of stored muon beam are detected by the detector consisting of silicon strip sensors installed in the storage magnet.
- It consists of 40 modules called vanes (composed with 4-quarter vanes) and uses silicon strip sensors for positron detection.

Expected sensitivities

- Overall μ^+ efficiency of 1.3 x 10⁻⁵.
- [~]2-year running will reach the BNL precision of a_μ assuming,
- 2.2 x 10⁷ s data taking time,
- 1 MW proton beam,
 - >5.7 x 10¹¹ e⁺'s for analysis,

14

- 50% μ^+ -polarization.
- Systematic uncertainties will be much smaller than statistical ones.

	Stat.	Syst.	
δa _μ [ppb]	450	< 70	
δEDM [10 ⁻²¹ e∙cm]	1.5	0.36	

Table 6. Estimated systmatic uncertainties on a_{μ} .

Anomalous spin pro	nomalous spin precession (ω_a) Magnetic field (ω_p)			
Source	Estimation (ppb)	Source	Estimation (ppb)	
Timing shift	< 36	Absolute calibration	25	
Pitch effect	13	Calibration of mapping probe	20	
Electric field	10	Position of mapping probe	45	
Delayed positrons	0.8	Field decay	< 10	
Diffential decay	1.5	Eddy current from kicker	0.1	
Quadratic sum	< 40	Quadratic sum	56	

Schedule and milestones

Now

KYUSHU UNIVERSITY

Summary

- J-PARC E34 aims to measure the muon g-2 and EDM with a new experimental approach.
- Low emittance muon beam with no strong focusing.
- MRI-type storage ring with a good injection efficiency and high uniformity of local B-field.
- Full tracking detector with large acceptance.
- The experiment is being prepared for realization.
- The development and construction is in progress to start data taking in FY2026.
- R&Ds of the experimental apparatus keep going well.
- Funding requests are being made to government.
- Intending to reach the BNL precision in ~2-year running.

References

• E34 TDR summary

(<u>https://doi.org/10.1093/ptep/ptz030</u>)

Muonium target

(<u>https://doi.org/10.1093/ptep/ptaa145</u>)

Muon Linac

- Demonstration by RFQ (<u>https://doi.org/10.1103/PhysRevAccelBeams.21.050101</u>)
- IH-DTL (<u>https://doi.org/10.1103/PhysRevAccelBeams.19.040101</u>)
- DAW (<u>http://accelconf.web.cern.ch/ipac2019/papers/tuprb117.pdf</u>)
- DLS (<u>https://doi.org/10.1088/1742-6596/874/1/012054</u>)

Injection

• (<u>https://doi.org/10.1016/j.nima.2016.05.126</u>)

Storage ring magnet

- (<u>https://doi.org/10.1016/j.nima.2018.01.026</u>)
- Positron detector
- (<u>https://doi.org/10.1088/1748-0221/15/04/P04027</u>)

Table 4	. Breakdown	of estimated	efficiency.
---------	-------------	--------------	-------------

Subsystem	Efficiency	Subsystem	Efficiency
H-line acceptance and transmission	0.16	DAW decay	0.96
Mu emission	0.0034	DLS transmission	1.00
Laser ionization	0.73	DLS decay	0.99
Metal mesh	0.78	Injection transmission	0.85
Initial acceleration transmission and decay	0.72	Injection decay	0.99
RFQ transmission	0.95	Kicker decay	0.93
RFQ decay	0.81	e^+ energy window	0.12
IH transmission	0.99	Detector acceptance of e^+	1.00
IH decay	0.99	Reconstruction efficiency	0.90
DAW transmission	1.00		

	Estimation
Total number of muons in the storage magnet	5.2×10^{12}
Total number of reconstructed e^+ in the energy window [200, 275 MeV]	5.7×10^{11}
Effective analyzing power	0.42
Statistical uncertainty on ω_a [ppb]	450
Uncertainties on a_{μ} [ppb]	450 (stat.)
	< 70 (syst.)
Uncertainties on EDM $[10^{-21} e \cdot cm]$	1.5 (stat.)
	0.36 (syst.)

Table 5. Summary of statistics and uncertainties.

Table 6.	. Estimated	systmatic	uncertainties	on a_{μ} .
		-		

Anomalous spin precession (ω_a)		Magnetic field (ω_p)		
Source	Estimation (ppb)	Source	Estimation (ppb)	
Timing shift	< 36	Absolute calibration	25	
Pitch effect	13	Calibration of mapping probe	20	
Electric field	10	Position of mapping probe	45	
Delayed positrons	0.8	Field decay	< 10	
Diffential decay	1.5	Eddy current from kicker	0.1	
Quadratic sum	< 40	Quadratic sum	56	