The MOLLER Experiment

Measurement of a Lepton Lepton Electroweak Reaction (MOLLER)

Chandan Ghosh Research Associate University of Massachusetts, Amherst

Collaboration: ~ 120 authors, 30 institutions, 5 countries Spokesperson: K. Kumar; UMass, Amherst

SPIN2021 Oct. 21

Introduction to parity-violating electron scattering

MOLLER experiment

Science Context

Overview of the Experimental Technique

Summary

Introduction of Parity-violating electron scattering (PVES)

 Asymmetry of cross-sections of longitudinally polarized electrons off a nuclear target

Interference of electromagnetic and weak neutral current amplitude

 PVES is used extensively to study nucleon, nuclear structures and for searches of new physics beyond the Standard model.

The Parity-Violating Asymmetry in Electron-Electron Scattering

$$\begin{aligned} \mathbf{A}_{\mathbf{PV}} &= \frac{\sigma_{\mathbf{R}} - \sigma_{\mathbf{L}}}{\sigma_{\mathbf{R}} + \sigma_{\mathbf{L}}} \\ &= -\mathbf{mE} \frac{\mathbf{G}_{\mathbf{F}}}{\sqrt{2}\pi\alpha} \frac{\mathbf{16}\sin^2\Theta}{(\mathbf{3} + \cos^2\Theta)^2} \mathbf{Q}_{\mathbf{W}}^{\mathbf{e}} \\ \mathbf{Q}_{\mathbf{W}}^{\mathbf{e}} &= \mathbf{1} - 4\sin^2\theta_{\mathbf{W}} \sim 0.075 \end{aligned}$$

Reaction Kinematics

E (GeV)	11
E'(GeV)	2.0 - 9.0
Beam Current	65 (μA)
Polarization	~90%
Luminosity	2.4E39 cm ⁻² S ⁻¹
MOLLER rate	134 GHz
Run time	344 PAC days

A Fundamental Parameter of the Electroweak Theory The Weak Mixing Angle

$$A_{PV} = \frac{\sigma_{R} - \sigma_{L}}{\sigma_{R} + \sigma_{L}}$$

$$= -mE \frac{G_{F}}{\sqrt{2}\pi\alpha} \frac{16\sin^{2}\Theta}{(3 + \cos^{2}\Theta)^{2}} Q_{W}^{e}$$

$$Q_{W}^{e} = 1 - 4\sin^{2}\theta_{W} \sim 0.075$$

$$MOLLER Projection:$$

$$\delta(\sin^{2}\theta_{W}) = \pm 0.00023 \ (stat.) \pm 0.00012 \ (syst.)$$

$$\sim 0.1\% \ measurement$$

MOLLER A_{pv} would be the first low Q^2 measurement comparable to the single best measurement at Z-pole

MOLLER measurement is the best among projected sensitivities for new measurements at low Q² or colliders over the next decade

Reaction at Q²<<M_z² is calculable to high accuracy

 \pm 5 σ discovery potential at Q²<< M_z^2

(ultra)-weak-electromagnetic interference Weak Charge Measurements

leptonic and semi-leptonic weak neutral current amplitudes

$$\begin{vmatrix} \mathbf{A}_{\gamma} + \mathbf{A}_{\mathbf{Z}} + \mathbf{A}_{new} \end{vmatrix}^{2} \rightarrow \mathbf{A}_{\gamma}^{2} \left[1 + 2 \left(\frac{\mathbf{A}_{\mathbf{Z}}}{\mathbf{A}_{\gamma}} \right) + 2 \left(\frac{\mathbf{A}_{new}}{\mathbf{A}_{\gamma}} \right) \right]$$

$$e^{-} \qquad e^{-} \qquad \mathbf{Q}_{\mathbf{W}}^{e} \sim 0.045$$

$$e^{-} \qquad \frac{\delta \mathbf{Q}_{\mathbf{W}}^{e}}{\mathbf{Q}_{\mathbf{W}}^{e}} = 2.4\%$$

$$\mathbf{A}_{new} \sim 0.001 \cdot \mathbf{G}_{\mathbf{F}}$$

UNPRECEDENTED SENSITIVITY

$$\mathcal{L}_{\mathrm{e}_{1}\mathrm{e}_{2}} = \sum_{\mathbf{i},\mathbf{j}=\mathbf{L},\mathbf{R}} rac{\mathbf{g}_{\mathbf{ij}}^{2}}{2\mathbf{\Lambda}^{2}} ar{\mathbf{e}}_{\mathbf{i}} \gamma_{\mu} \mathbf{e}_{\mathbf{i}} ar{\mathbf{e}}_{\mathbf{j}} \gamma^{\mu} \mathbf{e}_{\mathbf{j}}$$

 Λ - is the scale of new dynamics g_{ii} - is the strength of the interaction

$$rac{\Lambda}{\sqrt{|\mathbf{g}^2_{\mathbf{R}\mathbf{R}}-\mathbf{g}^2_{\mathbf{L}\mathbf{L}}|}}=7.5~\mathrm{TeV}$$

If g_{ij}~1, then MOLLER measurement has the potential to probe new dynamics ~10 TeV Scale!!

Technique Overview

Jefferson Lab - is the best place for its excellent beam!!

RF Synchronous lasers 499 MHz, Δφ = 120° Gun

Evolutionary progression to extraordinary luminosity and electron beam stability with high longitudinal beam polarization

MOLLER in Hall A at Jlab

Unique opportunity leveraging the 12 GeV Upgrade investment

Polarized Electron Source

Polarimetry in the experimental Hall

Compton Polarimetry

- Continuous, non-invasive measurement
- Utilized integrating technique with photon detector
- Evaluated systematic uncertainty
- Polarimeter runs will be taken continuously alongside the main detector data

- Low-current, invasive measurement
- 3-4T field provides saturated magnetization perpendicular to the foil
- Spectrometer redesigned for 11 GeV
- Polarimeter runs will be taken approximately every week

CREX Collaboration (part of MOLLER collaboration too) reported P = 87.09 ± (0.44% dP /P)

Target - The high power LH2 target built ever!!

Target Power	4 kW	
LH2 pump flow	ow 25 l/s	
θ , ϕ Acceptance	5-20 mrad, 2π	
pressure, Temperature	35 psia, 20K	
Radiation length	14.6%	
Cell Thickness	9 g/cm ²	
Cell length	125cm	

LH2 relative density reduction - $\Delta \rho/\rho < 1\%$ at 65 μ A LH2 density fluctuations - $\delta \rho/\rho < 30$ ppm at 1920 Hz

LER

Collaboration has extensive expertise to build such target system

Precision Collimator systems

Spectrometers

- The odd number of coils allow for 100% acceptance by always detecting one of the two electrons involved in the scattering
- The spectrometer allows us to separate the Møller electrons from the different backgrounds (largest being e-p elastic)

Integrating detector -Array of thin Cherenkov detectors

Auxiliary detector systems

Statistical and Systematic Error Budgets

Error Source	Fractional Error (%)	Parameter	Random Noise (65 μ A)	
Statistical	2.1	Statistical width (0.5 ms)	\sim 82 ppm	
Absolute Norm. of the Kinematic Factor	0.5	Target Density Fluctuation	30 ppm	
Beam (second order)	0.4	Beam Intensity Resolution	10 ppm	
Beam polarization	0.4	Beam Position Noise Detector Resolution (25%)	7 ppm 21 ppm (3.1%)	
$e + p(+\gamma) \rightarrow e + X(+\gamma)$	0.4	Electronics noise	10 ppm	
Beam (position, angle, energy)	0.4	Measured Width (σ_{pair})	91 ppm	
Beam (intensity)	0.3			
$e + p(+\gamma) \rightarrow e + p(+\gamma)$	0.3	$\sigma_{A_{ernt}} = rac{\sigma_{pair}}{72.2 \pm 10^7}$	= 0.54 ppb	
$\gamma^{(*)} + p \rightarrow (\pi, \mu, K) + X$	0.3	$\sqrt{(8.3 imes 10^{\prime}.N_{days})}$		
Transverse polarization	0.2	$A_{ernt}\sim 2$	daa 9	
Neutral background (soft photons, neutrons)	0.1	Capt	11	
Linearity	0.1	$\frac{A_{expt}}{dt} - f_{t}$	4	
Total systematic	1.1	$A_{pv} = rac{P_e - J_b T}{1 - f}$	$ \sim 33~{ m ppb}$	
		$I = J_b$		

Collaboration has performed many successful parity experiments at Jefferson Lab -Developed expertise on different subsystems

One (of many) new physics potentials

Heavy Photons (A' mixed with Z₀): The Dark Z

Models can accommodate the existence of new bosons that would have a large impact at low Q²

- MOLLER represents an outstanding opportunity to take advantage of the unique instrument (the 11 GeV CEBAF beam) created by the JLab 12 GeV upgrade
- The science case remains compelling and the intention is to run physics at about the time that precision results from high luminosity phases of 14 TeV LHC are becoming available
- An enthusiastic and well-experienced international collaboration is working for the design, construction, operation and physics analysis of the experiment.
- Currently, at engineering design phase; First physics run end of 2025.

Thank You

Appendix

Radiative Corrections

The Standard Model Prediction: Remarkably Well-Known

$$\begin{split} A_{PV} &= \frac{\rho G_F Q^2}{\sqrt{2\pi\alpha}} \frac{1-y}{1+y^4+(1-y)^4} \Big\{ 1 - 4\kappa(0) \sin^2 \theta_W(m_Z)_{\overline{\text{MS}}} \\ &+ \frac{\alpha(m_Z)}{4\pi \hat{s}^2} - \frac{3\alpha(m_Z)}{32\pi \hat{s}^2 \hat{c}^2} (1 - 4\hat{s}^2) [1 + (1 - 4\hat{s}^2)^2] \\ &+ F_1(y, Q^2) + F_2(y, Q^2) \Big\} \end{split}$$

Czarnecki and Marciano (1995)

$$\mathbf{Q}_{\mathbf{W}}^{\mathbf{e}} = \mathbf{1} - \mathbf{4} \sin^2 heta_{\mathbf{W}} \sim \mathbf{0.075} \Longrightarrow \mathbf{0.045}$$

$$rac{\delta(Q_W)}{Q_W} \sim 10\% \Longrightarrow rac{\delta(\sin^2 \theta_W)}{\sin^2 \theta_W} \sim 0.5$$

The small size of the coupling, further reduced by radiative corrections, will be a recurring theme: it eases the pressure on "normalization" errors

Unique Opportunity: Purely Leptonic Reaction at $Q^2 << M_z^2$ Theory Prediction

EW Theory Prediction Uncertainty Well Below Projected Experimental Uncertainty

Czarnecki and Marciano (1995)

$$A_{PV}(ee) \propto \rho G_F \left[1 - 4\kappa(0) \sin^2 \theta_W(m_Z)_{\overline{\text{MS}}} \right] + \cdots$$

z

Dominant Contribution at 1-loop

κ(0) known to 1% of itself Erler and Ramsey-Musolf (2003)

Jefferson Lab

Report submitted to DOE in September 2016: response to Science Review recommendation

 $\delta(Q^e_w)$ (theory) ~ 1.4%, expect to achieve < 0.5% with compete treatment of 2-loop

MOLLER $\delta(Q^{e}_{W})$ goal = ± 2.1 % (stat.) ± 1.1 % (syst.)

First PVES Measurement with TeV-scale sensitivity Previous Measurement: SLAC E158

1997-2004

Phys. Rev. Lett. **95** 081601 (2005)

Jefferson Lab

 A_{PV} = (-131 ± 14 ± 10) x 10⁻⁹

M

Project Status

Typical DOE Acquisition Management System

Approved the Critical Design (CD) 1 status by the Office of Nuclear Science, Department of Energy on December 2020.

\$

- Collaboration is planning for the CD2/3 review by late 2022 or early 2023.
- Projected end of physics running mid-2028.

Statistical and Systematic Error Budgets

Error Source	Fractional Error (%)
Statistical	2.1
Absolute Norm. of the Kinematic Factor	0.5
Beam (second order)	0.4
Beam polarization	0.4
$e + p(+\gamma) \rightarrow e + X(+\gamma)$	0.4
Beam (position, angle, energy)	0.4
Beam (intensity)	0.3
$e + p(+\gamma) \rightarrow e + p(+\gamma)$	0.3
$\gamma^{(*)} + p \rightarrow (\pi, \mu, K) + X$	0.3
Transverse polarization	0.2
Neutral background (soft photons, neutrons)	0.1
Linearity	0.1
Total systematic	1.1

Run	% Stat. error	Eff. (%)	PAC days
1	11.0	40	14
2	4.05	50	95
3	2.43	60	235
Total	2.1		344

Collaboration has performed many successful parity experiments at Jefferson Lab -Developed expertise on different subsystems

Complementarity to LHC indirect searches

+ NNLO + .. + N[∞]LO

- In the absence of direct measurements the LHC has also focused on setting limits based on deviations from SM calculations
- While the HL-LHC will set new limits to hadronic interactions the unique lepton-lepton interaction used by MOLLER could only be matched by a new e⁺e⁻ collider or neutrino factory

