

Proton-³He Scattering at Intermediate Energies

Department of Physics, Tohoku University Kimiko Sekiguchi

SPIN2021, October 18th, 2021

p-³He Collaboration

Department of Physics, Tohoku University

A. Watanabe, S. Nakai, Y. Wada, K. Sekiguchi, Y. Shiokawa,

K. Miki, T. Mukai, S. Shibuya, M. Watanabe, Y. Inoue,

K. Kawahara, D. Sakai, T. Taguchi, D. Eto, T. Akieda, H. Kon, M. Inoue, Y. Utsuki,

S. Kitayama. Y. Saito, K. Kameya, Y. Maruta CYRIC, Tohoku University

M. Itoh

KEK

T. Ino

RCNP, Osaka University

K. Hatanaka, A. Tamii, H.J. Ong, H. Kanda,

N. Kobayashi, A. Inoue, S. Nakamura, D. T. Tran

Kyushu University

T. Wakasa, S. Goto, Y. Hirai, D. Inomoto,

H. Kasahara, S. Mitsumoto, H. Oshiro

Miyazaki University

Y. Maeda, K. Nonaka

RIKEN Nishina Center

H. Sakai

RIKEN RANS

Y. Otake, A. Taketani, Y. Wakabayashi NIRS

T. Wakui Theoretical Supports by

A. Deltuva (Vilnius) S. Ishikawa(Hosei)

A.Watanabe

S. Nakai

Experiment at WS course, RCNP (2017)

Three-Nucleon Force (3NF) - nuclear forces acting in systems more than A > 2 nucleons -**Key** to fully understand properties of nucleus **Existence of 3NF** was predicted in 1930's (after Yukawa's meson theory). '80's First evidence of 3NF : Binding Energies of Triton (³H) '90's Realistic Nucleon-Nucleon Potential (CD Bonn, AV18, Nijmegen I, II) **Evidence / Candidates of 3NF Effects** Nucleon-Deuteron Scattering at Intermediate Energies Biding Energies / Levels of Light Mass Nuclei Equation of State of Nuclear Matter etc ...

3

Few-Nucleon Scattering

a good probe to study the dynamical aspects of 3NFs.

✓ Momentum dependence

✓ Spin & Iso-spin dependence

Direct Comparison between Theory and Experiment

• Theory: Faddeev / Faddeev-Yakubovsky Type Calculations Rigorous Numerical Calculations of 3, 4N System

2NF Input

- CDBonn
- Argonne V18 (AV18)
- Nijmegen I, II, 93

- 3NF Input
- Tucson-Melbourne
- Urbana IX etc..

2NF & 3NF Input

Chiral Effective Field Theory

- Experiment : Precise Data
 - $d\sigma/d\Omega$, Spin Observables (A_i, K_{ij}, C_{ij})

Extract fundamental information of Nuclear Forces.

3NF effects in proton-deuteron scattering at 70-250 MeV

K. S. et al., Phys. Rev. C 65, 034003 (2002),
K. Hatanaka et al., Phys. Rev. C. 66, 044002 (2002),
Y. Maeda et al., Phys. Rev. C 76, 014004 (2007),
K. S. et al., Phys. Rev. C 89, 064007 (2014) etc...

Solid base for study of detailed properties of 3NFs

- Clear signatures of 3NF Effects in the cross section minimum.
- 3NF effects become larger with increasing an incident energy.
- Spin dependent parts of 3NFs are deficient.

$p+{}^{3}\text{He Scattering}$

- I. Four Nucleon Scattering First Step from Few to Many
- 2. Isospin Dependence of 3NFs : T=3/2 3NFs
- 3. Large 3NF effects in cross section minimum at intermediate energies

Theory in Progress

Calculations above 4-body breakup threshold energy are available by A. Deltuva et al.

new possibilities for 3NF study in 4N scattering at higher energies

Experiments of $p+{}^{3}$ He at Intermediate Energies from RCNP & CYRIC

CYRIC, Tohoku Univ.

- Polarized *p* beam : 10 420 MeV
 - Polarizations : < 70 %
- Beam Intensity : $< 1\mu A$

p beam : 10 - 80 MeV
Beam Intensity : 10-20 nA

Polarized ³He Target System

- Polarization Method :
 - (Alkali-Hybrid) Spin Exchange Optical Pumping
- Polarization (current) : 50%, Relaxation time : about 40 hrs
- Calibration of absolute values : EPR & neutron-transmission

pol.p+pol.³He experiment at RCNP

Incident Energy	70 MeV	50 MeV	65 MeV	65 MeV	100 MeV
Beam	p	p	pol. p	pol. p	pol. p
Observables	A_{0y}	A_{0y}	$d\sigma/d\Omega, A_y$	$A_{y}, A_{0y}, C_{y,y}$	$A_y, A_{0y}, C_{y,y}$
Measured Angles $(\theta_{c.m.})$	46° –141°	47° –120°	27° -170°	47° –133°	47° –149°
Facility	CYRIC, Tohoku Univ.	CYRIC, Tohoku Univ.	RCNP, Osaka Univ.	RCNP, Osaka Univ.	RCNP, Osaka Univ.
Exp. Course	41 course	41 course	WS course	ENN course	ENN course

Summary of Measurements	for <i>p</i> + ³ He
--------------------------------	--------------------------------

Incident Energy	70 MeV	50 MeV	
Beam	p	р	
Observables	A_{0y}	A_{0y}	
Measured Angles $(\theta_{c.m.})$	46° –141°	47° –120°	
Facility	CYRIC, Tohoku Univ.	CYRIC, Tohoku Univ.	
Exp. Course	41 course	41 course	

data from RCNP/CYRIC

11

New Data Set of *p*+³He at Intermediate Energies

A. Watanabe, S. Nakai, et al. , Phys. Rev. C 103, 044001 (2021)

- Results of Comparison between Th.&Exp.
 - Cross Section Minimum Region
 - Cross Section
 - All Calc. with 2NF underestimate.
 - Spin Observables :
 - Large discrepancy in $A_y(^{3}\text{He})$
 - Large Δ -isobar Effects (calc.) in $C_{y,y}$

p-³He v.s. d+p

Linear correlation exits for the NN potentials.

- Cross section with a NN potential which reproduces the experimental B.E. (3N) underestimate the experimental value.
 - *p***-³He** : 20–30 % *d-p* : 10–20 %
 - ▶ The discrepancies are explained by 3NF in *d*-*p* scattering.

 p^{-3} He : 0.3 / MeV, *d-p* : 0.1 / MeV

Less dependence in *d-p*: dominance of spin quartet states (S=3/2)

 $\triangleright d-p$: Δ -isobar effects improve the agreements to the data.

 p^{-3} He : CD-Bonn+ Δ moves in an opposite direction to the exp. data.

Δ -isobar Effects

- $\stackrel{\scriptscriptstyle \oplus}{}$ NN-N Δ coupled channel approach
 - **♦ 3, 4NFs** :
 - ▶ Effective 3 & 4NFs with single Δ -isobar
 - ▶ 3N binding : stronger (attractive).

- ▶ 2N interaction including Δ -isobar.
- ▶ 3N binding : weaken (repulsive)

▶ *p*-³He

- \blacktriangleright \Delta-generated 3NFs increase the cross section.
- ▶ Dispersive ∆-isobar effects are strong and opposite to the 3,4NFs.
- Net Δ -isobar effects are small.

▶ d-p

▷ Δ-generated 3NFs >> 2N dispersive effects [S. Nemoto Ph.D thesis (1999)]

Deltuva and A.C.Fonseca, P.U. Sauer Phys. Lett. B 660, 471 (2008).

Δ -isobar Effects in Spin Correlation Coefficient $C_{y,y}$

Summary : *p*-³He elastic scattering at intermediate energies²⁰

Direct comparison between Exp. and Th.

Large discrepancy in the cross section minimum angles

Scaling relation between B.E. (3N) and the cross section in p-³He

- $d\sigma/d\Omega$ with NN potential which reproduces B.E.(3N) underestimate the data. - Similar discrepancies in d-p scattering are resolved by 3NF.

Relatively larger NN potential dependence
 reflection of medium & short interactions

 Δ -isobar effects by NN+N Δ coupled-channel approach

p-³He : Large 3NF effects are cancelled by strong 2N dispersive effects.
 d-*p* scattering : 3NF >> 2N dispersive

- Large Δ -isobar effects in Spin correlation coefficient $C_{y,y}$

p-³He scattering at intermediate energies is an excellent tool to explore the nuclear interactions that could not be accessible in d-p scattering.

 $p-^{3}$ He could provide sources of T=3/2 3NF. Note, T=1/2 dominant in d-p.