

High-energy spin physics at fixed-target experiments

Fabienne KUNNE CEA /IRFU Saclay, France

Highlights on measurements of:

- Nucleon spin, Gluon and quark helicities: DIS
- Transverse spin: DIS and Drell-Yan
- Generalized parton distributions : DVCS, HEMP

SPIN21, Matsue, Japan, Oct. 18-22, 2021

HERMES at DESY

/ COMPASS at CERN /

27 GeV e⁺& e⁻ Longit. polarized ~ 54% Gaseous intern. polar target 1995 to 2007

160-200 GeV

polarized muon beam DIS pion beam: Drell-Yan Long solid polarized targets

12 GeV

Hall D: hybrid

mesons

Hall B: GPDs

Polarized CW e⁻ beam Pol=85%, High luminosity

Hall C

Hall A: form

factors + Moller & SOLID...-2

JLab

Kinematical ranges

Nucleon spin - longitudinal

How is the nucleon spin distributed among its constituents?

- 3D mapping of nucleon and constraining L through DVCS and Hard Exclusive Meson Production

QCD fits- World data on g_1^p and g_1^d

 $d g_1$

 $d Log(Q^2)$

 $-\infty -\Delta g(x,Q^2)$

Polarized Deep Inelastic Scattering Nucleon spin structure functions g₁

 \rightarrow g₁ (x,Q²) as input to global QCD fits for extraction of $\Delta q_f(x)$ and $\Delta g(x)$

△ E143

C HERMES

CLAS W52.5 GeV

(i = 10)

x=0.22

x=0.29

10²

x=0.41

x=0.57

Q² (GeV/c)²

DIS

F. Kunne

NLO pQCD fit to g₁ DIS world data

- Assume functional forms for $\Delta\Sigma$, ΔG and Δq^{NS}
- Use DGLAP equations, relating $\Delta\Sigma$, ΔG evolutions .
- Fit g_1^{p} , g_1^{d} , g_1^{n} DIS world data. (SU₃)
- Extract $\Delta \Sigma$ ΔG Quarks Gluons

∆G not well constrained using DIS only

Obtain solutions with $\Delta G>0$ and $\Delta G<0$ Solution with $\Delta G>0$ agrees with result from DSSV++ which uses RHIC pp data

 $\Delta\Sigma$ well constrained in valence region $\Delta\Sigma$ = 0.31 (5) at Q²=3 (GeV/c)²

Still large uncertainty coming from the bad knowledge of functional form

Global fits to polarized PDFs (I)

Fits to world data, including collider data. Many fitters. Some examples:

Global fits to polarized PDFs (II)

Global fits to polarized PDFs (III)

JAM hep-ph 2105.04434

See also talk C. Cocuzza

$\Delta\Sigma$ and ΔG

Expected impact of EIC future data on integrals truncated to $x \sim 10^{-4}$

Huge reduction of uncertainties but need to use SU3

Gluon helicity \Delta G/G direct measurement

Results are in agreement with fits from NNPDF and DSSV++ using RHIC pp data, which give

 $\int_{0.05}^{0.2} \Delta g(x) \mathrm{d}x \simeq 0.20$

Quark helicities from semi-inclusive DIS $\rightarrow \ell$

 $l^{
ightarrow}p^{
ightarrow}
ightarrow l\,h^{+/-}$ X

Outgoing hadron tags quark flavor (via quark fragmentation functions)

Flavour separation of quark helicities:

NB: The SIDIS extraction uses input of quark Fragmentation Functions, not that well determined yet, especially for the strange quark sector.

 $D_i^h(z)$

 \overrightarrow{N}

Kaons- Quark fragmentation functions from NLO fits

Extensive sets of SIDIS kaon data COMPASS PLB 767 (2017) 133 change significantly flavor decomposition of FFs (& PDFs)

See plenary talk on FFs by F. Ringer

Ex1: DEHSS-17 fit to quark FF, includes recent kaon SIDIS data. ZD_{α}^{T}

Ex:2: JAM18 w/wo SIDIS

Combined fit of PDFs and FFs (prelim)

Also simultaneous/ iterative fits of PDFs & FFs: Ex: Borsa, Sasso, Stratmann, PRD96 (2017)

 \boldsymbol{Z}

& JAM20-sidis, PRD104 (2021) 016015

'SIA + SIDIS data : strong preference for smaller strange to nonstrange PDF ratio, and enhanced DsK'

-> revisit $\Delta s(x)$ extraction from SIDIS data

Transverse Momentum Dependent distr. : TMDs

Importance of p_T :

- P_T dependence results from:
 - intrinsic k_{\perp} of the quarks
 - p_{\perp} generated in the quark fragmentation

Global analyses of SIDIS, Drell-Yan and Z production data with TMD Q² evolution

Z production

Transverse momentum distribution

A. Bacchetta et al., JHEP06 (2017) 081 See also A. Martin talk Х

Transverse spin- Collins and Sivers functions (DIS)

- Access via SIDIS, transversely polarized target
- Measure simultaneously several azimuthal asymmetries, out of which :

Collins: Outgoing hadron direction & quark transverse spin

Sivers: Nucleon spin & quark transverse momentum k_T

Collins asymmetry → Transversity h

Sivers asymmetry → Sivers function

Correlation between Nucleon spin & quark transverse momentum k_T

Anselmino et al., JHEP04 (2017)046

Collins & Sivers. Recent global fits

Many global analyses of SIDIS, Drell-Yan, pp and e+e-.

Great progress: theoretical developments, large data sets, uncertainty studies JAM20, Etchevaria et al., Anselmino et al., Radici, Bacchetta, Kang et al., D'Alesio et al., Boglione et., Bury et al. .. e.g.:

JAM20, PRD102, 054002 (2020)

Transversity h₁/tensor charge

More data on deuteron needed COMPASS projection for 2022 data, pol. 6LiD:

Expected improvement on uncertainties by factors of : ~2 (u), ~ 3 (d)

SIDIS transverse spin

TMDs, new approach: weighted asymmetries

$$\begin{split} A_{Siv}^{(p_T^h/zM)}(x,z) &= 2 \frac{\sum_q e_q^2 f_{1T}^{\perp(1)\,q}(x) \cdot D_1^q(z)}{\sum_q e_q^2 f_1^q(x) \cdot D_1^q(z)}, \\ f_{1T}^{\perp(1)}(x,Q^2) &= \int d^2 k_T \frac{k_T^2}{2M^2} f_{1T}^{\perp}(x,k_T,Q^2). \end{split}$$

Sivers asymmetry, with weight p_T/zM No more convolution of TMDs and FFs but a product of integrals.

\rightarrow extract first moment of Sivers without assumption on k_T dependence

More on TMDs Many other results, e.g.: **HERMES:** extensive 3D analysis update talks: G. Schnell (Transv.), H. Marukyan (Longit.) Pretzelosity for π and K First Collins & Sivers for p & pbar [HERMES, JHEP12(2020) $(\sin(3\phi-\phi_S) / \varepsilon)_U$ K⁺ 2 {sin(φ+φ_S) / ε)_U 0.15 0.15 0.1 0.05 0.05 0.05 -0 -0.05 -0 -0.1 -0.15 0.15 -0.2 0.2 0.4 K р 0.15 0.3 0.3 0.1 0.2 0.2 0.05 0.1 -0.1 -0.05 -0.2 -0 --0.3 0.15 0.5 1 P_{h⊥} [GeV]_{Gunar Schnell} (quadrupole deformation): no sign 0.5 0.2 1 0 0.1 0.2 0.5 ^{0.5} 1 P_{h⊥} [GeV] 1 0 z Collins: vanishing Sivers: simil. magnitude as π +

ρ⁰ COMPASS first Collins and Sivers measurement *talk A.Moretti*

⁰ Collins asym: positive,

opposite to π +, as expected from models large at small $p_{\rm T}$

 ρ^0 Sivers asym: positive,

similarly to π +, as expected

F. Kunne

TMDs in polarized Drell-Yan

COMPASS, π induced Drell-Yan on pol. NH₃:

hep-ex 1908.01727, & talk A. Chumakov

Sivers $\sim 1\sigma$ above zero Transversity $\sim 2\sigma$ below zero Pretzelosity $\sim 1\sigma$ above zero

COMPASS 2015 data sign change DGLAP Sivers function: ---- TMD-1 0.1----- TMD-2 non-vanishing orbital angular momentum, sinqs Process dependence expected : 0 sign change between SIDIS and Drell-Yan Both measured in COMPASS -0.1at similar hard scale no sign change -0.50 0.5 COMPASS, PRL 119 (2017) 112002

See also Global analysis SIDIS+Star W, Z data : *M. Bury et al, PRL 126 (2021) 112002 :* only slight preference for Sivers sign-change (new STAR data not yet included).

GPDs generalized Parton Distributions

Physics goal: 3D mapping of nucleon and access to Orbital Angular Momentum

See theory talk by B. Pasquini

Determine 4 GPDs : $H, E, \tilde{H}, \tilde{E}$ (Re and Im parts) via 'exclusive' processes: DVCS (γ) and DVMP (ρ, ω, ϕ)

 e, μ $x+\xi$ $x-\xi$ p GPDs rk t

 $e p \rightarrow e$

Measurements at Jlab, Compass, Hermes and pioneering work at H1 and Zeus

DVCS interferes with Bethe-Heitler process

 \rightarrow Can use interference terms (e.g. at Jlab) or pure DVCS production with appropriate combinations of beam sign and polarization (COMPASS).

Way to it:

- Collect very large sample of data, various observables and several kinematic variables
- Global analyses to extract 4x2 Compton Form Factors CFFs
- Deconvolutions to finally access GPDs.

DVCS – Jlab CLAS proton target, e H \rightarrow e'p γ

 $d^4\sigma(x,Q^2,t,\phi)$ and $\Delta(d^4\sigma)$ beam spin difference, sensitive to $Im[H] \sim e^{-b(x)t}$

b related to proton transverse size

DVCS- t-slope of Cross-section (COMPASS)

Combining data from μ + and μ - beams (beam spin & charge sum), measure t-slope of DVCS cross section \rightarrow x dependence of transverse size of the nucleon

$$\sigma^{DVCS}/dt \sim exp^{-B|t|}$$

B(x_B) = ½ 2(x_B)>

Measurement of proton transverse size vs *x*_B

$\mathbf{F}_{\mathbf{a}} = \mathbf{COMPASS \ preliminary} = \mathbf{COM$

2016 data :prelim. result 3 x more stat. expected from 2017 data

New prelim. COMPASS result: (J. Giarra talk)

B ((GeV/*c*)⁻² Prelim. COMPASS: $<Q^2> = 1.8 (GeV/c)^2$ This analysis, preliminary 3 COMPASS: $<Q^2> = 1.8 (GeV/c)^2$ Phys. Lett. B793 (2019) 188 JHEP 0905 (2009) 108 ZEUS: $\langle Q^2 \rangle = 3.2 (GeV/c)^2$ H1: $\langle Q^2 \rangle = 4.0 (GeV/c)^2$ Eur. Phys. C44 (2005) 1 $\langle Q^2 \rangle = 8.0 (GeV/c)^2$ H1: Phys. Lett. B681 (2009) 391 H1[.] $<Q^2> = 10. (GeV/c)^2$ 10⁻³ 10⁻⁴ 10⁻² 10⁻¹ curves: x_{Bi} / 2 --- GK model at Q²=1.8 & 10 GeV² --- KM15 at Q²=1.8 & 10 GeV²

Flavour separation of CFFs

JLab Hall-A neutron and proton DVCS

Benali, Desnault, Mazouz et al., Nature Physics 16 (2020) 191-198

CFFs from globat fits of DVCS data

Example: 'PARTON' fit at LO/LT DVCS proton, Including Jlab, HERMES and COMPASS data 2600 / 3970 points

with constraints on GPDs (PDFs, elastic Form Factors, limits at $x \rightarrow 1...$)

Position of up quarks in a proton:

- 26

Summary – Spin at fixed target experiments

Gluon and quark contribution to nucleon spin

Gluon $\Delta G/G=0.1$ at x=0.1 (photon gluon fusion process) agrees with RHIC $\int \Delta G \sim 0.2$ Unknown contribution at low x

Quarks : $\frac{1}{2} \Delta \Sigma \sim 0.15$ from global QCD fit of g₁ world data Largest uncertainty comes from functional shape (of Δ G also) Agreement with Lattice QCD Flavor decomposition from SIDIS, down to x ~0.004.

Transverse Momentum Dependent parton distributions

Extensive and precise results on all azimuthal asymmetries Global analyses

GPDs via DVCS: Many data coming and promising framework for global analyses.

Bright future See talks on EIC, SPD at NICA, pol. tagets at LHC...