

High Energy Polarized Proton Accelerators In the USA

Thomas Roser October 21, 2021

In Memory **Ernest D. Courant** 1920 - 2020

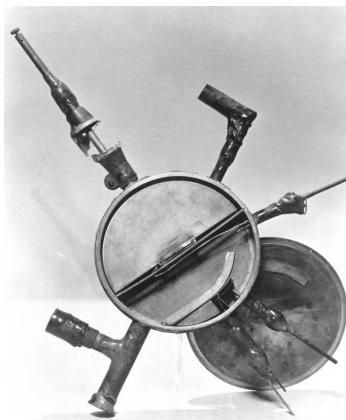
- 1948 Courant joined the BNL team that was building the Cosmotron
- He co-invented and developed the strong focusing principle, the basis of most modern accelerators including RHIC
- "Little did I know when I joined Brookhaven back in 1948 that accelerator physics would be my whole career," Courant said at the 2010 RHIC/AGS Users' Meeting.
- Courant also coined the name "Siberian snake" and first proposed the use of helical dipoles for Siberian snakes
- Long-term member of the International Spin Physics Committee

In Memory **Satoshi Ozaki** 1929 - 2017

- Master's degree from Osaka University and Ph.D. from MIT
- Developed first multi-purpose detector, the AGS Multi-Particle Spectrometer, at BNL
- Project leader and Director of the 30 GeV electron-positron collider TRISTAN in Japan, the world's highest energy e+ecollider at the time
- He returned to BNL in 1989 to lead the successful RHIC construction project
- Central to the establishment of RIKEN BNL Research Center
- Strong supporter of the RHIC Spin Collaboration and polarized protons in RHIC
- 2013: Order of the Sacred Treasure, Gold Rays with Neck Ribbon for the promotion of Japan-US cooperation in physics

In Memory **Willy Haeberli** 1925 - 2021

- Ph.D. in Physics from University of Basel (at the time a center of nuclear spin physics)
- Professor of Physics at University of Wisconsin, Madison
- Foundational contributions in spin-polarized beams and targets as a tool to study spin effects in nuclear and particle physics.
- Development of pure, spin-polarized gaseous targets of hydrogen or deuterium for use primarily in high energy storage rings
- RHIC absolute polarimeter using polarized atomic hydrogen
- Long-term member of the International Spin Physics Committee
- Personal note: Willy was a collaborator in my thesis experiment and greatly benefited from his sage advice.


Acceleration of Polarized Beams

- Progress in accelerator technology is motivated by and has driven advances in particle and nuclear physics
- This started with Ernest Lawrence's first cyclotron (1931) and continues to this day.
- The exploration of spin in nuclei and nucleons required the development of polarized sources and the acceleration of polarized beams
- I will focus on the acceleration of polarized protons from MeVs to 100s of GeV.

Spin Dynamics in Rings

• Precession Equation in Laboratory Frame: (Thomas [1927], Bargmann, Michel, Telegdi [1959])

dS/dt = - (e/ γ m) [(1+G γ)B₁ + (1+G) B₁] × S (G=(g-2)/2 : anomalous gyromagnetic ratio)

• Lorentz Force equation:

 $dv/dt = - (e/\gamma m) [$ B_{\perp} $] \times v$

• For pure vertical field: Spin rotates $G\gamma$ times faster than motion, spin tune $v_{sp} = G\gamma$

• For spin manipulation: At low energy, use longitudinal fields At high energy, use transverse fields

Depolarizing Spin Resonances

Depolarizing resonance condition:

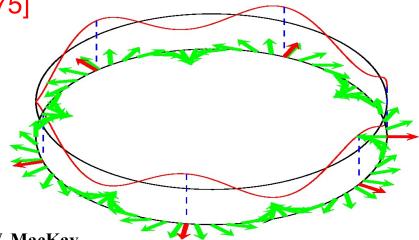
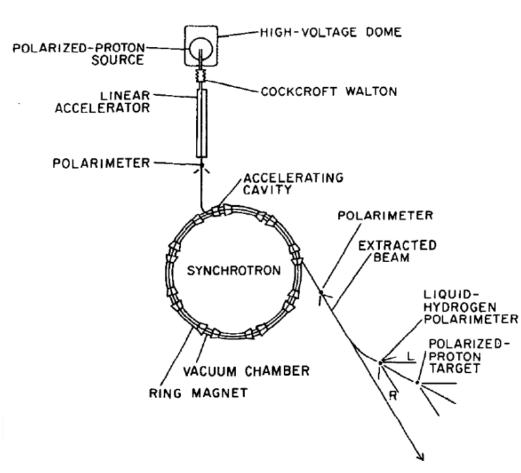
- Number of spin rotations per turn = Number of spin kicks away from stable direction per turn
- Spin resonance strength ϵ = Number of full spin rotations due to resonance per turn
- Imperfection resonance (magnet errors and misalignments):

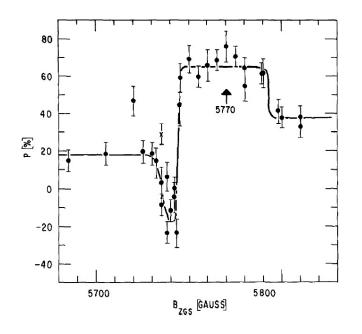
 $v_{sp} = n$

• Intrinsic resonance (Vertical focusing fields):

 $v_{sp} = Pn \pm v_y$ P: Superperiodicity [AGS: 12] v_y : Betatron tune [AGS: 8.75]

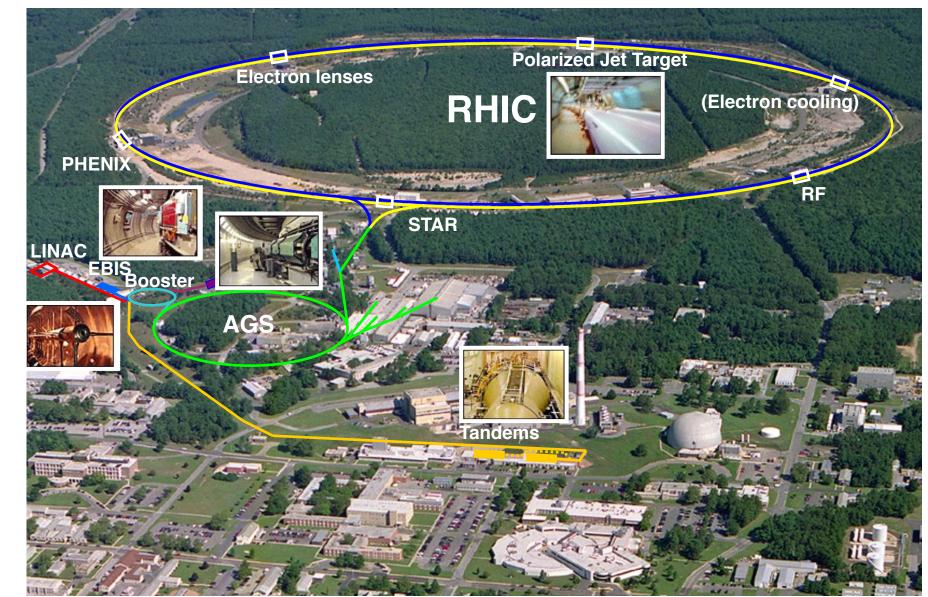
- Weak resonances: some depolarization
- Strong resonances: partial or complete spin flip

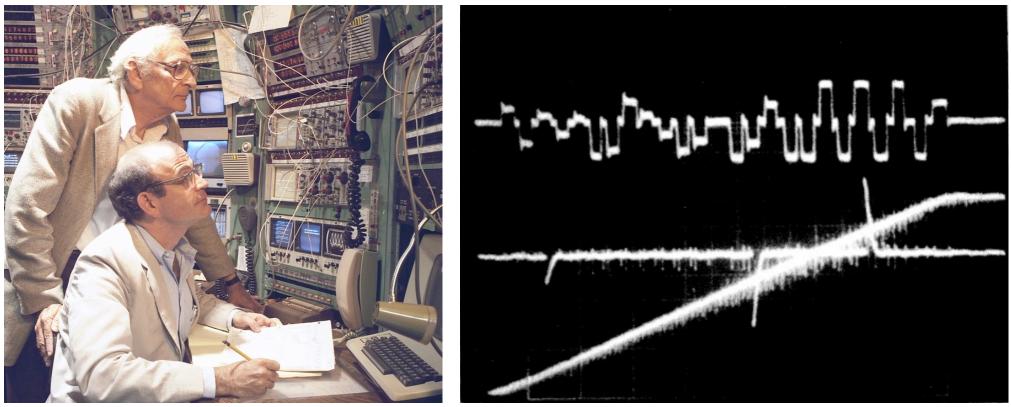

Illustration by W.W. MacKay

Polarized Proton Accelerations at the ZGS

 ZGS (up to 70% at 12 GeV/c): Weak resonances (ε_{max} ~ 0.002)



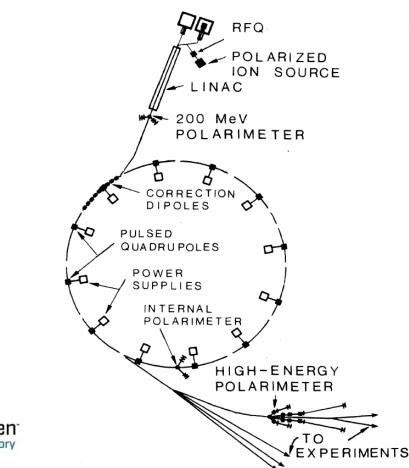
• Timing of betatron tune jump using polarization measurement

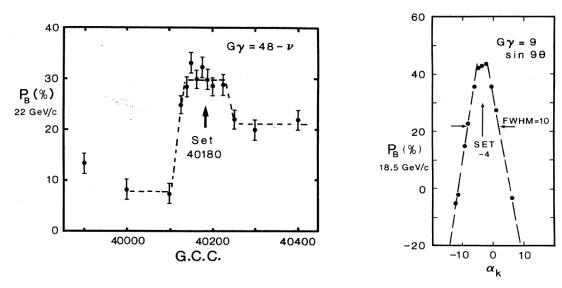

The RHIC Accelerator Complex

- Highly flexible and only US Hadron Collider
- Injectors also provide beams for unique applications

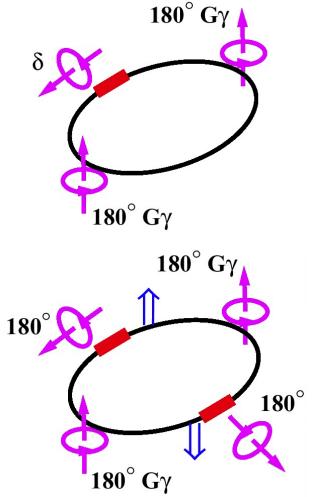
First Effort to Accelerate Polarized Protons in AGS

 In the 1980s, Alan Krisch and Larry Ratner led the first effort to polarize the AGS by correcting the approximately 50 imperfection and intrinsic depolarizing resonances. This was a truly heroic effort!




1/95 correction dipole; 1/10 pulsed quadrupole; main field

First Effort to Accelerate Polarized Protons in AGS (cont'd)


 AGS (up to 42% at 22 GeV/c): Strong resonances (ε_{max} ~ 0.03)

- Timing of betatron tune jump and adjusting dipole correction strength using polarization measurement
- Setting up polarized proton acceleration to 22 GeV required:
 - 6 pulsed quadrupole timing scans and
 - 2 × 40 harmonic corrector scans (sin + cos)

Siberian Snakes (Local Spin Rotators)

 $\cos(180^{\circ}v_{\rm sp}) = \cos(\delta/2) \cdot \cos(180^{\circ} \, {\rm Gy})$

• $\delta \neq 0^{\circ} \rightarrow \nu_{sp} \neq n$

- No imperfection resonances
- Partial Siberian snake (AGS)

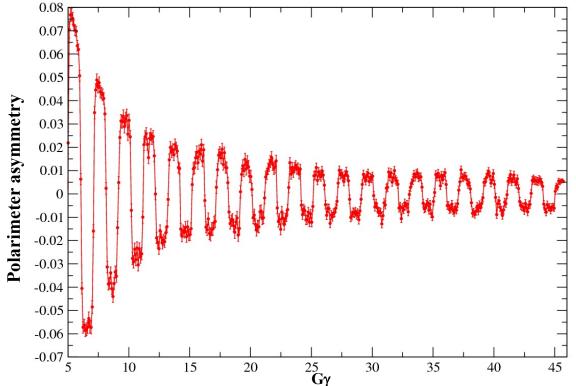
• $\delta = 180^{\circ} \rightarrow v_{sp} = \frac{1}{2}$

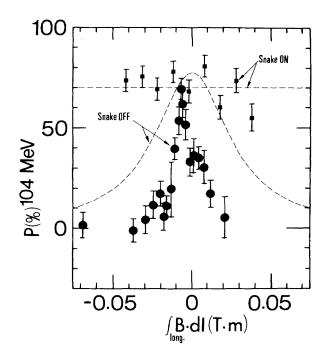
- No imperfection resonances and
- No Intrinsic resonances
- Full Siberian Snake (Ya.S. Derbenev and A.M. Kondratenko)

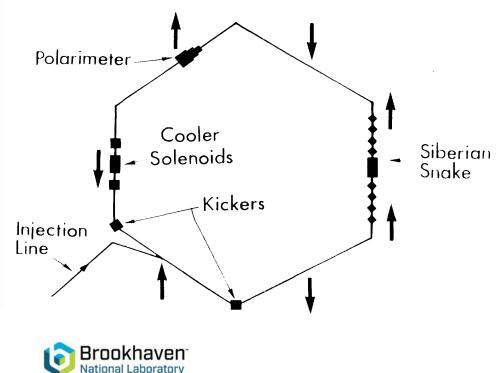
• Two Siberian Snakes (RHIC): $v_{sp} = (\alpha_2 - \alpha_1)/180^{\circ}$ ($\alpha_{1,2}$: angles between snake axis and beam direction)

• Orthogonal snake axis: $v_{sp} = \frac{1}{2}$ and independent of beam emittance

Polarized Protons in the AGS Today


- Two strong partial Siberian snakes using variable-pitch helical dipoles
- Vertical betatron tune at 8.98!
- Pulsed quadrupoles to jump across the many weak horizontal spin resonances driven by the partial snakes.

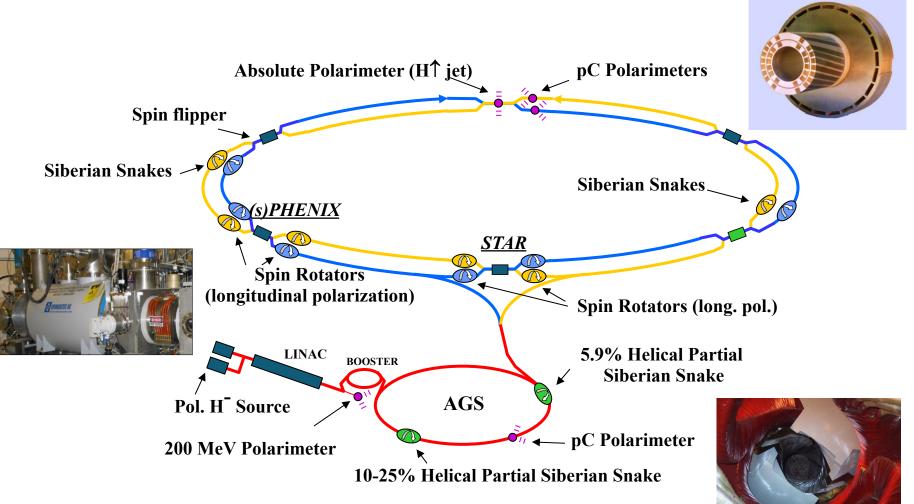

Larry Ratner, Haixin Huang and TR in AGS MCR.



First Siberian Snake Test at IUCF

• Full Siberian snake: 180° spin rotator without changing particle orbit.

 First full solenoid Siberian snake with optical correctors: 4 straight and 4 rotated quadrupoles (0 and 360 degrees betatron phase advance)



RHIC – First Polarized Hadron Collider

- Two full Siberian snakes per ring preserve proton polarization to 255 GeV
- Spin direction control at detectors with spin rotators
- Minimally invasive polarimeters; also measure polarization profiles
- Absolute polarimeter using world's most intense polarized H jet

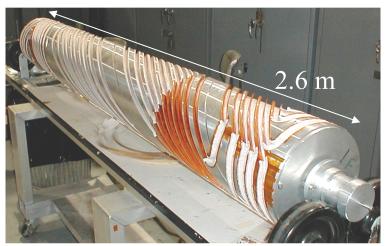
Brookhaven

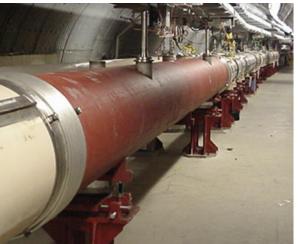
15

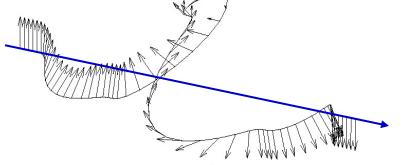
BNL - High intensity polarized H- source

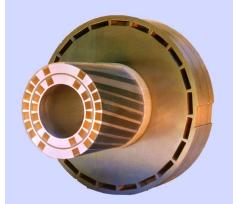
• Developed as BNL, TRIUMF, KEK, INR collaboration

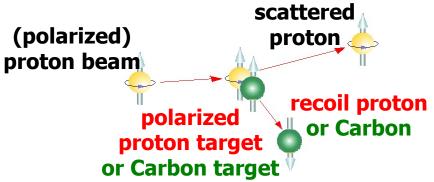
- 1.0 mA in 300 μ s (1.8 x 10¹² protons per pulse); 83% polarization
- One source pulse is captured and accelerated for one bunch in RHIC
- With inefficiencies and scraping to lower emittance and higher polarization bunch intensity in RHIC is 2.5 x 10¹¹ polarized protons


AGS and RHIC Siberian Snakes


- AGS Siberian Snakes: variable twist helical dipoles, 1.5 T (RT), built in Japan, and 3 T (SC), 2.6 m long
- RHIC Siberian Snakes (funded by RIKEN): 4 SC helical dipoles, 4 T, each 2.4 m long and full 360-degree twist



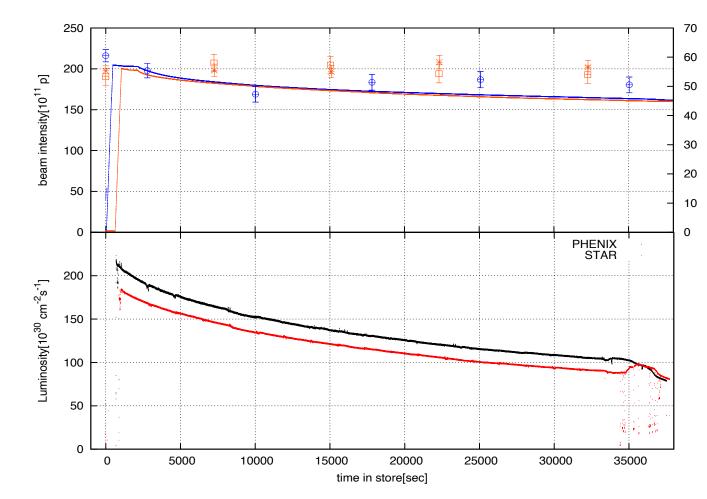

Brookhaven[.] National Laboratory



RHIC Polarimetry

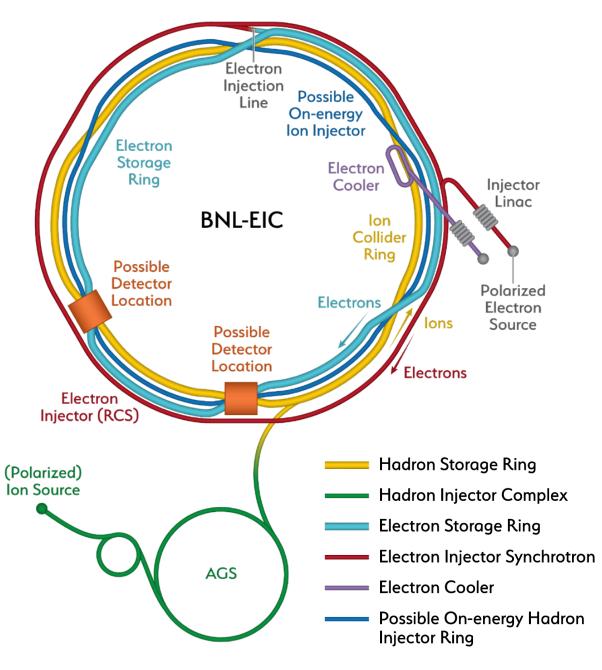
Absolute polarimeter (Pol. Hjet)

- Polarized hydrogen jet target allows for absolute beam polarization measurement: $P_{\text{Beam}} = P_{\text{Target}} \frac{\varepsilon_{\text{Beam}}}{\varepsilon_{\text{Target}}}$
- Jet target thickness of ~ 1×10¹² cm⁻² achieved
- $_{\bullet}\,$ Jet pol. 92 \pm 2 % measured with Breit-Rabi polarimeter
- Analyzing power $A_N \sim 0.044 (24 255 \text{ GeV})$
- Relative polarimeters (proton-carbon)
- Measure horizontal and vertical polarization profiles
- Fast measurements (~ 2 minutes)
- Local IP polarimeters (forward neutron production)
- Significant asymmetry, calibrated with Hjet
- Used to adjust transverse polarization component to zero



Polarized Proton Collisions at 255 GeV Beam Energy

- Reached ~57% average polarization in 14 best stores
- Little polarization loss on ramp and during store
- Peak luminosity: 2.5 \times 10³² cm⁻² s⁻¹
- Requires excellent control of orbit, tune and coupling

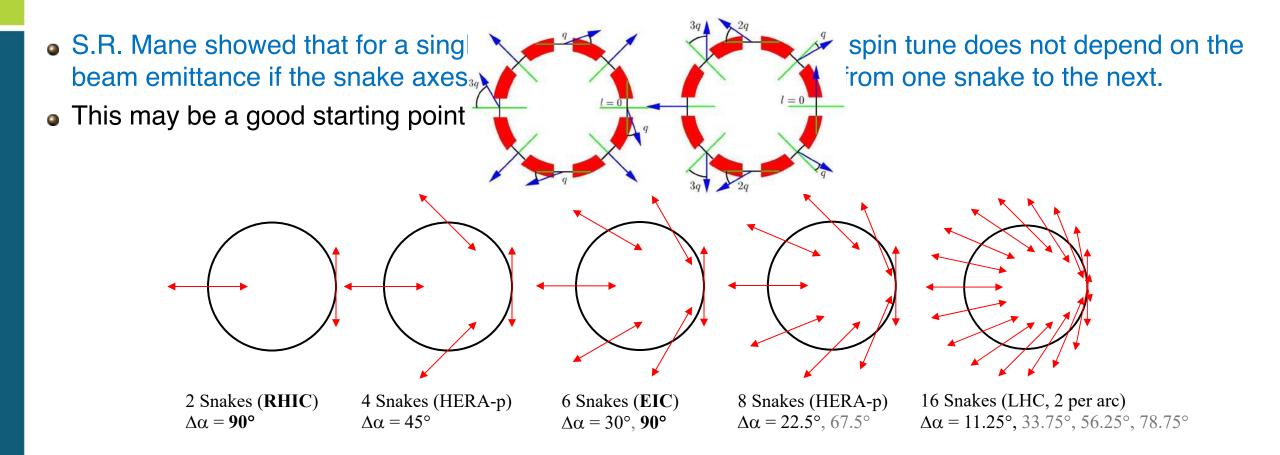


Electron Ion Collider

• Use existing RHIC accelerator complex

- Up to 275 GeV polarized protons
- Existing: tunnel, detector halls & hadron injector complex
- Add 18 GeV polarized electron accelerator in the same tunnel
- Achieve high luminosity, high energy polarized e-p/A collisions with full acceptance detector
- Strong hadron cooling needed for highest luminosities

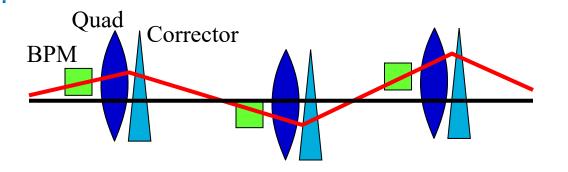
Multiple Siberian Snakes for High Energy Rings


- Spin rotation of Siberian snake (δ) >> Spin rotation of resonance driving fields (strength ϵ)
- Imperfection resonances: $\epsilon \propto \text{Energy}$; Intrinsic resonances: $\epsilon \propto \sqrt{\text{Energy}}$

		E _{max} /GeV	√E _{max} /GeV
• Partial snakes (AGS, $\delta \sim 27^{\circ}$)	$\varepsilon < 0.07$	24	5
 Two full snakes (RHIC) 	ε < 0.5	250	16
16 full snakes (LHC?)	ε < 4	7000	84

- Intrinsic resonance strengths increase slowly and can be addressed with multiple snakes
- Imperfection resonance strengths increase faster and require ever better vertical orbit corrections

Multiple Siberian Snakes (cont'd)



Global Imperfection Resonances – the Ultimate Energy Limit?

- Residual orbit distortion after orbit correction drives imperfection resonance with a strength that is not affected by (multiple) Siberian snakes
- Resonance strength needs to be less than 0.05 (S. Y. Lee and E. D. Courant, Phys. Rev. D 41, 292 (1990))
- At RHIC (250 GeV) this corresponds to ~250 μm residual orbit error (OK)
- At LHC (7 TeV) this corresponds to ~10 μ m residual orbit error ! (LHC orbit accuracy ~ 200 μ m)
- Need beam-based quadrupole offset measurement, same as minimized vertical dispersion
- Flatten actual beam orbit using H and V beam position monitors and correctors at each quadrupole:

Correct orbit to minimize kicks:

Orbit going through center of BPM'sOrbit without kicks

- Exceptional progress in polarized proton acceleration from a few MeV to colliding polarized protons at 510 GeV based on seminal contributions from Ernest Courant, Satoshi Ozaki, Willy Haeberli and many, many more.
- The ultimate limit for polarized proton acceleration might be if the depolarization can occur in a single turn from a "random" destructive orbit distortion pattern. The only remedy is an extremely flat beam orbit, which is likely not feasible at energies beyond the LHC.

