

n

JinQuest (E1039) Polarized Target : An Overview

Ishara Fernando, Zulkaida Akbar, Anchit Arora & Dustin Keller For the UVA Spin-Physics group

Outline

- Physics motivation
- SpinQuest (E1039) experiment setup at Fermilab
- Polarized Target setup at SpinQuest
- Dynamic Nuclear Polarization (DNP) method
- Microwave system
- > Target Materials
- Superconducting magnet system
- > Cryogenics
- Cryoplatform at NM4
- > NMR
- Summary

Physics motivation

- SpinQuest will perform the first measurement of the Sivers asymmetry in Drell-Yan pp scattering from the sea quarks.
- A non-zero Sivers asymmetry from SpinQuest is "smoking gun" evidence for sea quark Orbital-Angular Momentum
- Require a transversely polarized target capable of both high polarization and integrated luminosity:
 - Attempt to push the proton intensity frontier on a solid polarized target
 - Use the longest (max. volume) target cell ever in 1K evaporation polarized target system
 - This is the highest cooling power DNP (Dynamic Nuclear Polarization) target in the world due to the high pumping rate and the refrigerator.

SpinQuest Polarized Target Setup

SpinQuest Polarized Target Setup

Firsts for Polarized Targets

DYNAMIC NUCLEAR POLARIZATION (DNP) Method

➤ The coupling between (unpaired) electron & proton introduces hyper-fine splitting $H = -\mu_e B - \mu_p B + H_{SS}$

- Applying an RF-field at the correct frequency, we can drive the proton state into desired spin-state
- The disparity in relaxation times between the electron (ms) and proton (tens of minutes) at 1K is crucial to continue proton polarization

Allow to achieve proton polarization of > 90%

Achieving a significant proton polarization using DNP method

Continuous microwaves generator

Target material with a suitable number of unpaired electrons, resistance to radiation and reasonable dilution factor

Superconducting magnet with homogenous fields in the target region

Cryogenics system with high cooling power

Reliable Nuclear-Magnetic Resonance (NMR) system for polarization measurement

Microwave System

- 140 GHz RF signal is generated by Extended- Interaction Oscillator (EIO) through interaction between electron beam (produced from ~kV of cathode/anode) and resonant cavities
- The optimal frequency changes as we flip the spin direction. [freq change requiring the change in cavity size is to change polarization direction. Small freq changes can be made by adjusting the e beam velocity]
- The optimal frequency also changes as the target accumulate radiation damage from the beam.
- Therefore, the frequency is adjusted by adjusting the cavity size using a stepper motor (~2% adjustment)
- The EIO is coupled to the target cups via a wave-guide which send the microwave through the target stick terminating at a gold plate copper horn
- We will have 3 target cups so we can quickly replace the target when it is damaged due to the radiation
 ¹⁵

Target Materials

- A successful target material candidates for the DNP can be characterized by
 - Maximum achievable polarization
 - Dilution factor
 - Resistance to radiation damage
- SpinQuest experiment will use 8 cm of solid NH₃/ND₃ as target materials which are doped with paramagnetic free-radical by being irradiated at NIST (National Institute of Standard and Technology)
- The polarization decays over time due to the radiation damage and restored temporarily by annealing process (target is heated at 70-100 K).

Superconducting magnet system

- The superconducting magnet coils provide Magnetic Field (transverse to the beam): B = 5 T with uniformity *dB/B* < 10⁻⁴ over 8 cm [⁴He evaporation refrigerator (3 W of maximum cooling power) keeping the target at 1.0 K]
- The magnet consist of NbTi coils which are impregnated in epoxy to prevent them from moving during when the magnet is energized; and the coils are held in place by stainless steel (type: 316)

Superconducting magnet system: Maximum proton beam intensity before Quenching~6.3K@

The Thermal processes within the magnet is described by a general heat transfer equation:

$$c\frac{\partial T}{\partial t} = \nabla(\kappa\nabla T) + P_{ext} + P_{He}$$

 P_{ext} is the external-heat sources coming mainly from the beam-target interactions

 P_{He} is the heat transferred to the liquid Helium

The heat deposited to the magnet (P_{ext}) is simulated using Geant:

~5T target region

Superconducting magnet system: ^{~6.3K} @ Maximum proton beam intensity before Quenching ^{~5T} target region

The simulation was done using COMSOL by applying Finite-Element Method

The spatial & temporal profile of the temperature in the magnet

0.1

Time=4.4 s Surface: Temperature (K)

-0.1

8.11

0.2

0.1

-0.2

¥ 4 04

B-Profile of the magnet. The quench limit for the Bmax is 6.85 T

Stainless-steel former

Courtesy of Zulkaida Akbar

Based on this study the maximum intensity of the beam is 2.7×10^{12} proton/sec (with pumping on the He reservoir at 2.5 K with the rate of 100 SLPM)

Cryogenics

Evaporated He from the target nose need to be pumped out by high powered pump to keep the temperature at 1 K at 0.12 Torr.

Critical components for high-cooling power refrigerator:

- High-power pump
- Sufficient supply of the liquid Helium
- Heat exchanger that bring the He temperature down from 4.2 K to 1 K
- Thermal shielding

Cryogenics

•

•

Cryoplatform

- Cryoplatform showing the He-liquefier and Roots pumps setup
- The liquefier is capable to supply 200 liter per day of liquid He
- Roots pump have the pumping capacity of ~ 16,800 m³ per hour

Cryoplatform : Roots pumps setup

Cryoplatform

Helium Liquefier setup

Nuclear Magnetic Resonance (NMR)

- Polarization of the proton is measured using NMR technique
- An RF field at the Larmor frequency of the proton (213 MHz at 5 T) can cause a flip of the spin
- The RF field is produced by three NMR coils inside the target cup

- An LCR Circuit is tuned to the Larmor frequency of the target material
- ➤ The power generated or absorbed due to spin flip change → the circuit impedance that can be observed

Nuclear Magnetic Resonance (NMR)

UVA-NMR (PDP interface) with a sample crystal

- Q-Curve is produced by sweeping the RF around the Larmor frequency
- > The signal area after background subtraction is proportional to the polarization
- The proportional constant is obtained at Thermal-Equilibrium measurement

$$P = tanh\left(\frac{\mu B}{kT}\right)$$

Notes: SpinQuest experiment will use a new NMR system developed by LANL-UVA based on the original Liverpool Q-meter design

Predicted Uncertainties

- ➢ Beam (∽ 2.5%)
 - Relative luminosity (~ 1%)
 - Drifts (< 2%)
 - Scraping (∽ 1%)
- ➤ Analysis sources (~ 3.5%)
 - Tracking efficiency (~ 1.5%)
 - Trigger & geometrical acceptance (<2%)
 - Mixed background (~ 3%)
 - Shape of DY (∽ 1%)
- ➤ Target (~ 6-7 %)
 - TE calibration (proton ~ 2.5%; deuteron ~ 4.5%)
 - Polarization inhomogeneity (~ 2%)
 - Density of target $(NH_{3(s)})$ (~ 1%)
 - Uneven radiation damage (~ 3%)
 - Beam-Target misalignment (~ 0.5%)
 - Packing fraction (~ 2%)
 - Dilution factor (~ 3%)

Summary

The main polarized-target system for the SpinQuest experiment consist of a 5T superconducting-split magnet, 140 GHz RF generator, 8 cm of solid NH3/ND3 target, evaporation refrigerator and LANL/UVA-NMR system

During cooldowns at University of Virginia, The SpinQuest-polarized target achieved maximum proton polarization of 95% using Dynamic-Nuclear Polarization (DNP) technique

Welcome!

Please Join The Effort Dustin Keller (<u>dustin@virginia.edu</u>)[Spokesperson] Kun Liu (<u>liuk@fnal.gov</u>)[Spokesperson]

https://spinquest.fnal.gov/

http://twist.phys.virginia.edu/E1039/

‡ Fermilab

Thank you

This work is supported by DOE contract DE-FG02-96ER40950