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Observation of direct transitions between quantum
states with energy differences of 10 neV and below



What is a Sona transition?

Sona transition unit
Static B-field (parallel to the beam direction) that reverses its direction along the quantization axis. 
Applied to polarized H/D ion sources with beam direction parallel to the quantization axis. 
P. G. Sona, Energia Nucleare 14, 295 (1967).

Theory
Metastable H atom (𝐼𝐼 = 𝐽𝐽 = 1/2) in external static B-field

𝐻𝐻 = 𝐴𝐴 𝑰𝑰 ⋅ 𝑱𝑱 − 𝑔𝑔𝐽𝐽𝜇𝜇𝐵𝐵𝑱𝑱 + 𝑔𝑔𝐼𝐼𝜇𝜇𝑁𝑁𝑰𝑰 ⋅ 𝑩𝑩,

where 𝐴𝐴 = 177.56 𝑀𝑀𝑀𝑀𝑀𝑀 (hyperfine-structure constant), 𝑔𝑔𝐽𝐽 ≈ −2 (electron g-factor), 𝑔𝑔𝐼𝐼 = 5.59 (proton g-factor), 
𝜇𝜇𝐵𝐵 = 9.27 × 10−24 𝐽𝐽/𝑇𝑇 (Bohr magneton), and 𝜇𝜇𝑁𝑁 = 5.05 × 10−27 𝐽𝐽/𝑇𝑇 (nuclear magneton).
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What is a Sona transition?

The eigensystem in the |𝑚𝑚𝐽𝐽,𝑚𝑚𝐼𝐼⟩ basis:

𝛼𝛼1 = ⇑, ↑ 𝐸𝐸1 =
𝐴𝐴
4
−

1
2
𝑔𝑔𝐽𝐽𝜇𝜇𝐵𝐵 + 𝑔𝑔𝐼𝐼𝜇𝜇𝑁𝑁 𝐵𝐵

𝛼𝛼2 =
𝑛𝑛1 𝐵𝐵
ℎ1 𝐵𝐵

⇑, ↓ +
𝐴𝐴

ℎ1 𝐵𝐵
⇓, ↑ 𝐸𝐸2 = −

𝐴𝐴
4

+
1
2

𝐴𝐴2 + 𝑔𝑔𝐽𝐽𝜇𝜇𝐵𝐵 − 𝑔𝑔𝐼𝐼𝜇𝜇𝑁𝑁
2𝐵𝐵2

𝛽𝛽3 = ⇓, ↓ 𝐸𝐸3 =
𝐴𝐴
4

+
1
2
𝑔𝑔𝐽𝐽𝜇𝜇𝐵𝐵 + 𝑔𝑔𝐼𝐼𝜇𝜇𝑁𝑁 𝐵𝐵

𝛽𝛽4 =
𝑛𝑛2 𝐵𝐵
ℎ2 𝐵𝐵

⇑, ↓ +
𝐴𝐴

ℎ2 𝐵𝐵
⇓, ↑ 𝐸𝐸4 = −

𝐴𝐴
4
−

1
2

𝐴𝐴2 + 𝑔𝑔𝐽𝐽𝜇𝜇𝐵𝐵 − 𝑔𝑔𝐼𝐼𝜇𝜇𝑁𝑁
2𝐵𝐵2

𝑛𝑛1,2 𝐵𝐵 = −𝑔𝑔𝐽𝐽𝜇𝜇𝐵𝐵𝐵𝐵 + 𝑔𝑔𝐼𝐼𝜇𝜇𝑁𝑁𝐵𝐵 ± 𝐴𝐴2 + 𝑔𝑔𝐽𝐽𝜇𝜇𝐵𝐵 − 𝑔𝑔𝐼𝐼𝜇𝜇𝑁𝑁
2𝐵𝐵2 ,  ℎ1,2 𝐵𝐵 = 𝐴𝐴2 + 𝑛𝑛1,2

2
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⇑, ↓ +
𝐴𝐴
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4

+
1
2
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2𝐵𝐵2

𝛽𝛽3 = ⇓, ↓ 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 𝐸𝐸3 =
𝐴𝐴
4
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1
2
𝑔𝑔𝐽𝐽𝜇𝜇𝐵𝐵 + 𝑔𝑔𝐼𝐼𝜇𝜇𝑁𝑁 𝐵𝐵
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⇑, ↓ +
𝐴𝐴

ℎ2 𝐵𝐵
⇓, ↑ 𝐸𝐸4 = −

𝐴𝐴
4
−

1
2

𝐴𝐴2 + 𝑔𝑔𝐽𝐽𝜇𝜇𝐵𝐵 − 𝑔𝑔𝐼𝐼𝜇𝜇𝑁𝑁
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2𝐵𝐵2 ,  ℎ1,2 𝐵𝐵 = 𝐴𝐴2 + 𝑛𝑛1,2

2

Theoretical framework

Page 4

𝐵𝐵 → −∞, 𝛼𝛼2 → ⇓, ↑

𝐵𝐵 = 0, 𝛼𝛼2 =
1
2

⇑, ↓ + ⇓, ↑

𝐵𝐵 → +∞, 𝛼𝛼2 → ⇑, ↓

𝐵𝐵 → −∞, 𝛽𝛽4 → − ⇑, ↓

𝐵𝐵 = 0, 𝛽𝛽4 =
1
2

⇓, ↑ − ⇑, ↓

𝐵𝐵 → +∞, 𝛽𝛽4 → ⇓, ↑

Mixed state

Mixed state
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What is a Sona transition?

Zero-crossing requirements
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What is a Sona transition?

Zero-crossing requirements
In the zero-crossing region:

Theoretical framework
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Bz-field direction

𝜇𝜇
𝜇𝜇

𝜇𝜇

𝜔𝜔𝐵𝐵

𝐵𝐵𝑟𝑟
𝜔𝜔𝐿𝐿

∇ ⋅ 𝑩𝑩 = 0
𝐵𝐵𝑧𝑧 = 𝐵𝐵(𝑧𝑧) 𝐵𝐵𝑟𝑟 = −

𝑟𝑟
2
𝑑𝑑𝐵𝐵𝑧𝑧
𝑑𝑑𝑑𝑑𝐵𝐵𝜙𝜙 = 0

“Sudden” zero-field crossing
𝜏𝜏𝐵𝐵 ≪ 𝜏𝜏𝐿𝐿 ⇒ 𝜔𝜔𝐵𝐵 ≫ 𝜔𝜔𝐿𝐿

⇒ 2
𝑣𝑣
𝑟𝑟
≫

𝑒𝑒𝑒𝑒
4𝑚𝑚𝑒𝑒

𝑑𝑑𝐵𝐵𝑧𝑧
𝑑𝑑𝑑𝑑

⇒
8𝑚𝑚𝑒𝑒𝑣𝑣
𝑒𝑒𝑟𝑟2

≫
𝑑𝑑𝐵𝐵𝑧𝑧
𝑑𝑑𝑑𝑑

⇒ 2
𝑣𝑣
𝑟𝑟
≫

𝑒𝑒𝐵𝐵𝑟𝑟
2𝑚𝑚𝑒𝑒

𝑒𝑒𝐵𝐵𝑟𝑟2

2𝑚𝑚𝑒𝑒𝑣𝑣
≪
𝑑𝑑𝐵𝐵𝑧𝑧
𝑑𝑑𝑑𝑑

≪
8𝑚𝑚𝑒𝑒𝑣𝑣
𝑒𝑒𝑟𝑟2

Displacement of the zero crossing point

𝑟̅𝑟 =
2𝐵𝐵𝑟𝑟

𝑑𝑑𝐵𝐵𝑧𝑧/𝑑𝑑𝑑𝑑
, 𝑟̅𝑟2

𝑑𝑑𝐵𝐵𝑧𝑧
𝑑𝑑𝑑𝑑

≪
8𝑚𝑚𝑒𝑒𝑣𝑣
𝑒𝑒

⇒
𝑒𝑒𝐵𝐵𝑟𝑟2

2𝑚𝑚𝑒𝑒𝑣𝑣
≪
𝑑𝑑𝐵𝐵𝑧𝑧
𝑑𝑑𝑑𝑑



Sona transition studies

Optically Pumped Polarized Ion Source (BNL OPPIS)

Unexpected polarization oscillations
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• An electron-polarized atomic beam passes through
a Sona transition unit and gets nuclear-polarized.

• Zero-crossing requirements were fulfilled for H
atoms with E = 3 keV.

• Polarization oscillations observed while increasing
the coil current.

• First (qualitative) explanation attempt: At some
values of the coil current, the resulting magnetic
field could produce a rotation of the electron spin
vector, about the radial field, equal to an even
multiple of 2π radians, for peaks in the polarization,
and to an odd multiple of π radians for the minima.A. Kponou et al., AIP Conf. Proc. 980, 241 (2008).



Sona transition studies

Optically Pumped Polarized Ion Source (BNL OPPIS)

Unexpected polarization oscillations
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• E. P. Antishev and A. S. Belov, AIP Conf. Proc. 980,
263 (2008).

• Non-adiabatic passage through the Sona transition
unit for the corresponding B-field configuration.

• The simulated beam polarization has been
calculated by averaging over an effective beam
diameter of 10 mm.

• The loss of polarization is well-described, but the
number of peaks (and dips) and their positions are
not sufficiently well determined.

A. Zelenski et al., EPAC (2008).
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Sona transition studies

Neutron Bound Beta Decay (BoB)
• For the detection of metastable H atoms in the β3-state with a Lamb-shift polarimeter (LSP), a Sona transition

unit is necessary to transfer the atoms from the β3-state to the α1-state.

Unexpected polarization oscillations
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Y. Gan, B.S. Thesis (2017).

• Zero-crossing requirements
were fulfilled for metastable
H atoms with energy in the
keV range.

• Polarization oscillations
observed while increasing
the coil current.

P. Buske, B.S. Thesis (2016).



Current developments
Experimental setup
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H2 H2
+, p p H(2S1/2) 𝛼𝛼1−state 𝛽𝛽3−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼1/𝛼𝛼2−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Lyman−α



Current developments
Measured signals

Page 15



Current developments

Time-dependent perturbation theory

• In the rest frame: 𝐻𝐻(𝑡𝑡) = 𝐴𝐴 𝑰𝑰 ⋅ 𝑱𝑱 − 𝑔𝑔𝐽𝐽𝜇𝜇𝐵𝐵𝑱𝑱 + 𝑔𝑔𝐼𝐼𝜇𝜇𝑁𝑁𝑰𝑰 ⋅ 𝑩𝑩 𝒕𝒕 = 𝐻𝐻0 + 𝑉𝑉(𝑡𝑡)

• Cylindrically symmetric magnetic field: 𝑩𝑩(𝒕𝒕) = 𝐵𝐵𝑟𝑟(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �𝑥𝑥 + 𝐵𝐵𝑟𝑟(𝑡𝑡) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝑦𝑦 + 𝐵𝐵𝑧𝑧(𝑡𝑡) 𝑧̂𝑧

• Evaluate 𝐻𝐻0 = 𝐴𝐴 𝐼𝐼𝑧𝑧 𝐽𝐽𝑧𝑧 + 1
2
𝐴𝐴 𝐼𝐼+𝐽𝐽− + 𝐼𝐼−𝐽𝐽+

and 𝑉𝑉 𝑡𝑡 = −𝑔𝑔𝐽𝐽𝜇𝜇𝐵𝐵
1
2
𝐵𝐵𝑟𝑟 𝑡𝑡 𝐽𝐽+𝑒𝑒−𝑖𝑖𝑖𝑖 + 𝐽𝐽−𝑒𝑒𝑖𝑖𝑖𝑖 + 𝐵𝐵𝑧𝑧 𝑡𝑡 𝐽𝐽𝑧𝑧 − 𝑔𝑔𝐼𝐼𝜇𝜇𝑁𝑁

1
2
𝐵𝐵𝑟𝑟 𝑡𝑡 𝐼𝐼+𝑒𝑒−𝑖𝑖𝑖𝑖 + 𝐼𝐼− 𝑒𝑒𝑖𝑖𝑖𝑖 + 𝐵𝐵𝑧𝑧 𝑡𝑡 𝐼𝐼𝑧𝑧

• Solve the eigenvalue equation 𝐻𝐻0 𝑛𝑛 = 𝐸𝐸𝑛𝑛 𝑛𝑛 to calculate the eigenenergies and eigenstates

1 = ⇑, ↑ 𝐸𝐸1 = 𝐴𝐴
4

3 = ⇓, ↓ 𝐸𝐸3 = 𝐴𝐴
4

2 = 1
2

⇑, ↓ + ⇓, ↑ 𝐸𝐸2 = 𝐴𝐴
4

4 = 1
2

⇓, ↑ − ⇑, ↓ 𝐸𝐸4 = −3𝐴𝐴
4

Numerical simulations
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Current developments

Time-dependent perturbation theory

• Solve the unperturbed Schrödinger equation 𝑖𝑖ℏ 𝜕𝜕|𝑛𝑛⟩
𝜕𝜕𝜕𝜕

= 𝐻𝐻0|𝑛𝑛⟩ to obtain the unperturbed time evolution of the

system: 𝑛𝑛 𝑡𝑡 = 𝑒𝑒−
𝑖𝑖𝐸𝐸𝑛𝑛𝑡𝑡
ℏ 𝑛𝑛 , for 𝑛𝑛 = 1, . . , 4

• Any quantum state can be expressed in this basis

𝜓𝜓 𝑡𝑡 = �
𝑛𝑛=1

4

𝑐𝑐𝑛𝑛 𝑡𝑡 |𝑛𝑛(𝑡𝑡)⟩ = �
𝑛𝑛=1

4

𝑐𝑐𝑛𝑛 𝑡𝑡 𝑒𝑒−𝑖𝑖𝐸𝐸𝑛𝑛𝑡𝑡/ℏ |𝑛𝑛⟩

• Evaluate the Schrödinger equation of the system

𝑖𝑖𝑖
𝜕𝜕 𝜓𝜓 𝑡𝑡
𝜕𝜕𝜕𝜕

= 𝐻𝐻 𝑡𝑡 𝜓𝜓 𝑡𝑡 = 𝐻𝐻0 + 𝑉𝑉 𝑡𝑡 𝜓𝜓 𝑡𝑡 ⇒ … ⇒ 𝑖𝑖𝑖𝑐̇𝑐𝑚𝑚 𝑡𝑡 = �
𝑙𝑙=1

4

𝑐𝑐𝑙𝑙 𝑡𝑡 𝑒𝑒−𝑖𝑖(𝐸𝐸𝑙𝑙−𝐸𝐸𝑚𝑚)𝑡𝑡/ℏ ⟨𝑚𝑚|𝑉𝑉 𝑡𝑡 𝑙𝑙

Numerical simulations

Page 17



Current developments

Experimental conditions

Numerical simulations
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Current developments

Experimental conditions

Numerical simulations
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Current developments

Experimental conditions
• Integration over a Gaussian beam profile.

𝑓𝑓 𝑥𝑥, 𝑦𝑦 = 1
2𝜋𝜋𝜎𝜎𝑥𝑥

𝑒𝑒−
1
2 𝑥𝑥/𝜎𝜎𝑥𝑥 2 1

2𝜋𝜋𝜎𝜎𝑦𝑦
𝑒𝑒−

1
2 𝑦𝑦/𝜎𝜎𝑦𝑦

2
,

where 𝜎𝜎𝑥𝑥 = 𝜎𝜎𝑦𝑦 = 𝜎𝜎 = 0.5 cm.

In polar coordinates (𝑥𝑥 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑦𝑦 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)

𝑓𝑓 𝑟𝑟,𝜙𝜙 = 𝑓𝑓 𝑟𝑟 = 1
2𝜋𝜋𝜎𝜎2

𝑒𝑒−
1
2 𝑟𝑟/𝜎𝜎 2

, 

where ∫0
2𝜋𝜋 ∫0

6𝜎𝜎 𝑓𝑓 𝑟𝑟 𝑟𝑟 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 = 1.

𝑐𝑐𝑚𝑚 2 are independent of 𝜙𝜙.

2𝜋𝜋�
0

6𝜎𝜎
𝑐𝑐𝑚𝑚 2 𝑓𝑓 𝑟𝑟 𝑟𝑟 𝑑𝑑𝑑𝑑

Numerical simulations
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Current developments

Simulated occupation numbers

Numerical simulations
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Current developments
Simulated and measured signals
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Current developments

Interpretation of measurements
• The atoms are transferred from state 𝛼𝛼1 to 𝛽𝛽3, during their passage from one Sona solenoid to the other (the

direction of quantization axis is reversed).
• The atoms experience a time-varying radial magnetic field with a definite shape. The magnetic field amplitude

depends on the coil current and the distance of the atoms from the center of the coils.
• This induces transitions from state 𝛽𝛽3 to 𝛼𝛼2 and from 𝛼𝛼2 to 𝛼𝛼1.
• Equivalently, multiple photons of frequency 𝑓𝑓 are absorbed:

Δ𝐸𝐸 = 𝑛𝑛 ⋅ ℎ ⋅ 𝑓𝑓

𝑛𝑛 denotes an integer number.
• The frequency 𝑓𝑓 depends on:
 the shape of the radial magnetic field (i.e. distance between the coils)
the velocity of the hydrogen atoms

Spectroscopy
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Current developments

Interpretation of measurements
• For 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 1.28 keV (or 𝑣𝑣𝐻𝐻 = 4.95 × 105 m/s) and distance of 60 mm between the closest ends of the coils.

Δ𝐸𝐸 = 𝑛𝑛 ⋅ ℎ ⋅ 𝑓𝑓 ⇒ Δ𝐸𝐸 = 𝑛𝑛 ⋅ 3.536 MHz or 𝑛𝑛 ⋅ 1.462 × 10−8 eV

Spectroscopy
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Current developments

Interpretation of measurements

Spectroscopy
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Current developments

Interpretation of measurements

Spectroscopy
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Current developments

Interpretation of measurements
• 𝐵𝐵′ = 0.723 ± 0.003 ⋅ 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 + 0.004 ± 0.020 mT

• 𝑓𝑓 = 3.536 ± 0.007 MHz or Δ𝐸𝐸𝑛𝑛=1 = 1.462 ± 0.003 × 10−8 eV

• Determine transitions with an energy difference of 14.62 neV and an uncertainty of 3 × 10−11 eV or 7 kHz.

Future improvements
• Replace the ionizer with an ECR ion source to increase the beam intensity and decrease the statistical

uncertainty down to 10−13 eV.
Such an uncertainty allows to test the QED corrections in the Breit-Rabi formula.
Similar measurements for deuterium atoms.

Spectroscopy
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