SPIN2021

18–22 Oct 2021, Matsue, Shimane Pref., Japan

Status of Lamb-shift polarized ion source at 6 MV tandem accelerator in UTTAC and its application to nuclear physics

T. Moriguchi^A,

A. Ozawa^A, Y. Yamato^A, M. Hayashi^A, R. Kagesawa^A, N. Kaname^A, M. Mukai^B, K. Tomita^A, A. Yano^A

A University of Tsukuba, Japan B RIKEN, Nishina Center, Japan

Outline

Status of polarized ion source

1. University of Tsukuba Tandem Accelerator Complex (UTTAC) and Lamb-shift Polarized Ion Source (PIS)

2. Operation of the PIS

Application to nuclear physics

3. Measurement of nuclear magnetic resonance (NMR) of unstable nuclei

Outline

Status of polarized ion source

1. University of Tsukuba Tandem Accelerator Complex (UTTAC) and Lamb-shift Polarized Ion Source (PIS)

2. Operation of the PIS

Application to nuclear physics

3. Measurement of nuclear magnetic resonance (NMR) of unstable nuclei

Tsukuba

- > About 50 km away from Tokyo
- > Known as the Tsukuba science city
 - University of Tsukuba
 - Japan Aerospace Exploration Agency (JAXA)
 - High Energy Accelerator Research
 Organization (KEK) and more

http://www.jaxa.jp/projects/pr/ brochure/files/centers01.pdf

https://www.kek.jp/ja/PublicRelatio ns/DigitalLibrary/2017_youran.pdf

University of Tsukuba Tandem Accelerator Complex (UTTAC)

Scientific studies with ion beams since 1975

- Nuclear physics
- Accelerator mass spectroscopy (AMS)
- > Ion beam analysis and more..

The original main tandem accelerator (1975-2011) was shut down because of the critical damage due to the giant earthquake occurred 10 years ago.

6MV Pelletron tandem accelerator

1st floor of the accelerator building

Model: 6 MV Pelletron Tandem (18SDH-2, National Electrostaics Corp., USA)
Accelerator Tank Size: Length: 10.5 m Diameter: 2.74 m Line Height: 1.78 m Weight: 20,865 kg
Terminal Voltage: 1.0 - 6.5 MV
Voltage Ripple: ≤ 750 V p-p at 6.0 MV
Voltage Control: GVM & Slit Current Feedback System
Maximum Beam Current: H: 3 μA Heavy ions: ~50 μA
Terminal Stripper: Gas (Ar or N₂) Foil Unit (80 Foil Holders)

6MV Pelletron tandem accelerator

1st floor of the accelerator building

Lamb-shift polarized ion source (PIS)

PIS was also reconstructed from the damage due to the giant earthquake.

Outline

Status of polarized ion source

1. University of Tsukuba Tandem Accelerator Complex (UTTAC) and Lamb-shift Polarized Ion Source (PIS)

2. Operation of the PIS

Application to nuclear physics

3. Measurement of nuclear magnetic resonance (NMR) of unstable nuclei

4. Summary

> By adjusting magnetic and electric fields appropriately, state of $m_I = +1/2$ or $m_I = -1/2$ (polarized beam) is obtained.

It is possible to supply polarized proton and deuteron beams with highly polarization.

Schematic cross section of the PIS

Checking polarized beams @ the PIS building

Checking polarized beams @ the PIS building

12/23

Beam current measured by a faraday cup @ PIS

Quenching method for the measurement of the polarization

Polarization of \vec{p} after acceleration

This polarimeter is based on the p-4He elastic scattering.

Polarization of \vec{p} after acceleration

The depolarization is found during the transport from PIS to the experimental course.

Outline

Status of polarized ion source

1. University of Tsukuba Tandem Accelerator Complex (UTTAC) and Lamb-shift Polarized Ion Source (PIS)

2. Operation of the PIS

Application to nuclear physics

3. Measurement of nuclear magnetic resonance (NMR) of unstable nuclei

β-NMR (Nuclear Magnetic Resonance)

An effective method to detect a nuclear magnetic resonance (NMR) using asymmetry of emitted β rays.

β-NMR (Nuclear Magnetic Resonance) ^{18/23} An effective method to detect a nuclear magnetic resonance (NMR) using asymmetry of emitted β rays.

β-NMR (Nuclear Magnetic Resonance)

An effective method to detect a nuclear magnetic resonance (NMR) using asymmetry of emitted β rays.

Experimental setup for β-NMR

- in the stopper via the polarizationtransfer reaction with \vec{p} and \vec{d} beams.
- The number of β-ray from unstable nuclei were counted by up and down plastic counters.

β-ray time spectrum ²⁹P, ³⁰P, ²⁵Al

Production of unstable nuclei (²⁹P, ³⁰P, ²⁵Al) in the beam stopper is confirmed.

Result of β **-NMR**

Summary and prospect

- In the University of Tsukuba Tandem Accelerator Complex (UTTAC), the Lamb-shift polarized ion source (PIS) is used as one of the injections for the 6 MV Pelletron tandem accelerator.
- Lamb-shift polarized ion source can supply polarized proton and deuteron beams with highly polarization.

Polarization : ~80% for proton ~60% for deuteron

- Using polarized beams from PIS, we confirmed the production of unstable nuclei (^{29,30}P, ²⁵Al) via the polarization-transfer reaction, and observed the nuclear magnetic resonance (NMR) with the β -NMR method.
- We will measure the nuclear moments of unstable nuclei with polarized proton and deuteron beams.