Theory and Phenomenology of Helicity PDFs

Chris Cocuzza (Temple U.) **On behalf of:** Nobuo Sato (Jefferson Lab)

Introduction

Current State of Helicity PDFs

Proton spin puzzle: $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$

Still a lot to learn about helicity PDFs at low *x* and the helicity sea quark PDFs!

Recent Theory Highlights Recent global analyses highlights Opportunities at the EIC

Δg from Heavy Quarks in DIS (2021)

Jet Production in polarized DIS (2018-2021)

Inclusive jet production as a probe of polarized PDFs at a future EIC

Radja Boughezal,^{1,*} Frank Petriello,^{1,2,†} and Hongxi Xing^{1,2,‡}

https://arxiv.org/abs/1806.07311

Provides sensitivity to both quark and gluon PDFs depending on kinematics

Inclusive-jet and Di-jet Production in Polarized Deep Inelastic Scattering

Ignacio Borsa^{*} Departamento de Física and IFIBA, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 1 (1428) Buenos Aires, Argentina

Daniel de Florian[†] and Iván Pedron[‡] International Center for Advanced Studies (ICAS), ICIFI and ECyT-UNSAM, 25 de Mayo y Francia, (1650) Buenos Aires, Argentina

https://arxiv.org/abs/2010.07354

W Boson Production at RHIC (2021)

Small *x* **Helicity Evolution (2016)**

Helicity Evolution at Small x: Flavor Singlet and Non-Singlet Observables

Yuri V. Kovchegov* Department of Physics, The Ohio State University, Columbus, OH 43210, USA

Daniel Pitonyak[†] Division of Science, Penn State University-Berks, Reading, PA 19610, USA and RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA

Matthew D. Sievert[‡] Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA and Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA Could be used to predict spin structure below $x \approx 0.01$ in absence of experimental data

https://arxiv.org/abs/1610.06197

Derived small *x* behavior of singlet and non-singlet helicity PDFs in light-front perturbation theory

$$\Delta q(x, Q^2) \sim \left(\frac{1}{x}\right)^{\alpha_h^q}$$
$$\Delta G(x, Q^2) \sim \left(\frac{1}{x}\right)^{\alpha_h^G}$$
$$\alpha_h^q = \frac{4}{\sqrt{3}} \sqrt{\frac{\alpha_s N_c}{2\pi}} \approx 2.31 \sqrt{\frac{\alpha_s N_c}{2\pi}}$$
$$\alpha_h^G = \frac{13}{4\sqrt{3}} \sqrt{\frac{\alpha_s N_c}{2\pi}} \approx 1.88 \sqrt{\frac{\alpha_s N_c}{2\pi}}$$

Angular Momentum at Small x (2018)

On the small-x behavior of the orbital angular momentum distributions in QCD

Yoshitaka Hatta¹ and Dong-Jing Yang²

https://arxiv.org/abs/1802.02716

Examined gluon and quark orbital angular momentum at small *x* in two models

 $\frac{d}{d\ln Q^2} \begin{pmatrix} L_q(x) \\ L_g(x) \end{pmatrix} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} \begin{pmatrix} \hat{P}_{qq}(z) & \hat{P}_{qg}(z) & \Delta \hat{P}_{qq}(z) & \Delta \hat{P}_{qg}(z) \\ \hat{P}_{gq}(z) & \hat{P}_{gg}(z) & \Delta \hat{P}_{gq}(z) & \Delta \hat{P}_{gg}(z) \end{pmatrix} \begin{pmatrix} L_q(x/z) \\ L_g(x/z) \\ \Delta \Sigma(x/z) \\ \Delta G(x/z) \end{pmatrix}$

Significant cancellation between gluon helicity and angular momentum

 $L_g(x) \approx -\Delta G(x) + \cdots$

Moments from Lattice QCD (2020)

Complete flavor decomposition of the spin and momentum fraction of the proton using lattice QCD simulations at physical pion mass

> C. Alexandrou^{1,2}, S. Bacchio², M. Constantinou³, J. Finkenrath², K. Hadjiyiannakou^{1,2}, K. Jansen⁴, G. Koutsou², H. Panagopoulos¹, G. Spanoudes¹ (Extended Twisted Mass Collaboration)¹

https://arxiv.org/abs/2003.08486

Calculated quark and gluon contributions to the spin of the proton

	$\langle x angle$	J	$rac{1}{2}\Delta\Sigma$	L
u^+	0.359(30)	0.211(22)	0.432(8)	-0.221(26)
d^+	0.188(19)	0.050(18)	-0.213(8)	0.262(20)
s^+	0.052(12)	0.016(12)	-0.023(4)	0.039(13)
c^+	0.019(9)	0.009(5)	-0.005(2)	0.014(10)
g	0.427(92)	0.187(46)		
Tot.	1.045(118)	0.473(71)	0.191(15)	0.094(51)

Quasi-PDFs from Lattice QCD (2019-2021)

Flavor decomposition of the nucleon unpolarized, helicity and transversity parton distribution functions from lattice QCD simulations

Constantia Alexandrou, $^{1,\,2}$ Martha Constantinou, 3 Kyriakos Hadjiyiannakou, $^{1,\,2}$ Karl Jansen, 4 and Floriano Manigrasso $^{1,\,5,\,6}$

https://arxiv.org/abs/2106.16065

Proton Isovector Helicity Distribution on the Lattice at Physical Pion Mass $$({\rm LP^3}$\ Collaboration})$

Huey-Wen Lin,^{1, 2} Jiunn-Wei Chen,^{3, 4} Xiangdong Ji,^{5, 6} Luchang Jin,^{7, 8} Ruizi Li,¹ Yu-Sheng Liu,^{9, *} Yi-Bo Yang,^{1, 10, †} Jian-Hui Zhang,¹¹ and Yong Zhao⁴

https://arxiv.org/abs/1807.07431

Quasi-PDF approach allows calculation of isovector distributions

$$\Delta q(-x) = \Delta \bar{q}(x)$$

Recent Theory Highlights Recent global analyses highlights Opportunities at the EIC

Current State of Helicity PDF Global Analyses

Data space

Impact of COMPASS DIS data (2018)

Impact of recent COMPASS data on polarized parton distributions and structure functions

M. Salimi-Amiri, A. Khorramian, and H. Abdolmalek, *Faculty of Physics, Semnan University, 35131-19111, Semnan, Iran*

F. I. Olness Department of Physics, Southern Methodist University, Dallas, TX 75275-0175, USA[§]

https://arxiv.org/abs/1805.02613

Experiment	Reference		Data	x-Range	Q^2 -Range	\mathcal{K}_i
		Type	# data points		(GeV^2)	
HERMES	52, 53	DIS (g_1^p)	39	0.028 - 0.66	1.01-7.36	1.000
HERMES06	51	DIS (g_1^p)	51	0.026 - 0.731	1.12 - 14.29	0.999
$\mathrm{SLAC}/\mathrm{E143}$	57	DIS (g_1^p)	28	0.031 - 0.749	1.27 - 9.52	0.999
$\mathrm{SLAC}/\mathrm{E155}$	60	DIS (g_1^p)	24	0.015 - 0.750	1.22 - 34.72	1.023
\mathbf{SMC}	62	DIS (g_1^p)	12	0.005 - 0.480	1.30-58.0	1.000
EMC	61	DIS (g_1^p)	10	0.015 - 0.466	3.50 - 29.5	1.011
COMPASS10	63	DIS (g_1^p)	15	0.005 - 0.568	1.10-62.10	0.993
COMPASS16	[68]	DIS (g_1^p)	51	0.0035 - 0.575	1.03-96.1	1.000
Proton			230			
HERMES06	51	DIS (g_1^d)	51	0.026 - 0.731	1.12 - 14.29	0.997
SLAC/E143	57	DIS (g_1^d)	28	0.031 - 0.749	1.27 - 9.52	0.998
$\mathrm{SLAC}/\mathrm{E155}$	58, 59	DIS (g_1^d)	24	0.015 - 0.750	1.22 - 34.79	0.999
SMC	62	DIS (g_1^d)	12	0.005 - 0.479	1.30-54.80	0.999
COMPASS17	69	DIS (g_1^d)	43	0.0045 - 0.569	1.03-74.1	1.001
Deuteron			158			
HERMES	52, 53	DIS (g_1^n)	9	0.033 - 0.464	1.22 - 5.25	0.999
HERMES06	51	DIS (g_1^n)	51	0.026 - 0.731	1.12 - 14.29	1.000
$\mathrm{SLAC}/\mathrm{E142}$	54	DIS (g_1^n)	8	0.035 - 0.466	1.10-5.50	0.999
$\mathrm{SLAC}/\mathrm{E154}$	56	DIS (g_1^n)	17	0.017 - 0.564	1.20 - 15.00	0.999
Neutron			85			
Total			473			

Impact of STAR Di-Jet Data (2019)

Monte Carlo sampling variant of the DSSV14 set of helicity parton densities

Daniel de Florian^{*} International Center for Advanced Studies (ICAS), UNSAM, Campus Miguelete, 25 de Mayo y Francia (1650) Buenos Aires, Argentina

Gonzalo Agustín Lucero[†] and Rodolfo Sassot[‡] Departamento de Física and IFIBA, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 1 (1428) Buenos Aires, Argentina

> Marco Stratmann[§] and Werner Vogelsang[¶] Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany

https://arxiv.org/abs/1902.10548

Small x Global Analysis (2021)

Combining Experiment with Lattice (2020)

Confronting lattice parton distributions with global QCD analysis

J. Bringewatt

Department of Physics, University of Maryland, College Park, Maryland 20742, USA

N. Sato, W. Melnitchouk, and Jian-Wei Qiu Jefferson Lab, Newport News, Virginia 23606, USA

F. Steffens

Institüt für Strahlen- und Kernphysik, Universität Bonn, 53115 Bonn, Germany

M. Constantinou

Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA

https://arxiv.org/abs/2010.00548

16

Combining experiment and lattice in a global QCD analysis is feasible!

Gluon Polarization (2021)

How well do we know the gluon polarization in the proton?

Y. Zhou,^{1,2,*} N. Sato,² and W. Melnitchouk²

$$\int_{0}^{1} dx [\Delta u^{+} - \Delta d^{+}] = g_{A} \int_{0}^{1} dx [\Delta u^{+} + \Delta d^{+} - 2\Delta s^{+}] = a_{8}$$

PRELIMINARY

https://arxiv.org/abs/2006.07377

Helicity Sea Asymmetry (2021)

First Extraction of Polarized Sea Asymmetry from Weak Boson Production in **Proton-Proton Collisions**

C. Cocuzza,¹ W. Melnitchouk,² A. Metz,¹ and N. Sato²

PRELIMINARY

1. Recent Theory Highlights 2. Recent global analyses highlights 3. Opportunities at the EIC

SCIENCE REQUIREMENTS

EIC Yellow Report

Impact of A_1 **from EIC on** Δg (2020)

Extrapolation and Theory Assumptions (2021)

Impact of Parity Violating DIS (2021)

23

 10^{-1}

Tagged DIS and Neutron Spin Structure (2020)

24

Polarized electron-deuteron deep-inelastic scattering with spectator nucleon tagging

W. $Cosyn^{1, 2, *}$ and C. $Weiss^{3, \dagger}$

https://arxiv.org/abs/2006.03033

Summary

SCIENCE REQUIREMENTS AND DETECTOR CONCEPTS FOR THE ELECTRON-ION COLLIDER EIC Yellow Report

Summary

0.04

0.03

0.02

0.01

0.00

0.01 0 02

0.03

0.04

0.04

0.03

0.02

0.01

0.00

-0.01

0.02

0.03

0.04

Theory

 $p \rightarrow iet + iet + e + 2$

15 = 20 $\langle p_T^B \rangle_2 [\text{GeV}]$

Helicity Evolution at Small x: Flavor Singlet and Non-Singlet Observables

On the small-x behavior of the orbital angular momentum distributions in QCD

Proton Isovector Helicity Distribution on the Lattice at Physical Pion Mass (LP³ Collaboration)

20

26

Global Analyses

First analysis of world polarized DIS data with small-x helicity evolution

DSSV

 10^{-}

Summary

Opportunities at the EIC

Revisiting Helicity Parton Distributions at a Future Electron-Ion Collider

Revisiting quark and gluon polarization in the proton at the EIC

 $t = (p_p - p_d)^2$

Summary

Related Talks (times are JST)

Progress on Lattice QCD studie	rogress on Lattice QCD studies on the spin physics					
 18 Oct 2021, 16:00 30m Matsue, Shimane Prefecture, Japan 	lenary Presentation (Plenary Presentations	Plenary presentations				
Speaker						
Constantia Alexandrou (University of Cyprus						

Description

Resent results obtained using state-of-the-art lattice QCD simulations on the nucleon spin decomposition will be reviewed. The results include valence and sea quark and gluon contributions. Open issues in particular connected to the fixing and renormalisation will be discussed.

Small-x Helicity Evolution and the Proton Spin Puzzle

Nucleon Helicity Struct...

29

22 Oct 2021, 07:00
 Parallel Session keynot...
 Som

Room 501 (Kunibiki Messe)

Speaker

👤 Dr Daniel Pitonyak

Description

We report on the first phenomenological analysis of the world polarized deep-inelastic scattering (DIS) data incorporating small-x helicity (Kovchegov-Pitonyak-Sievert) evolution. This framework allows for one to predict the behavior of helicity parton distribution functions (PDFs) down to very low x. Consequently, one can control the uncertainties in these functions beyond the measured region and make precise calculations of the integrals needed to determine the contribution of quark and gluon spin to the proton spin. Therefore, the small-x helicity formalism will play a crucial role in using future Electron-Ion Collider data to resolve the proton spin puzzle.

We present the first global QCD analysis of helicity parton distribution functions (PDFs) to include the latest polarized *W*-lepton production data from the STAR collaboration at the Relativistic Heavy-Ion Collider. This data allows the first extraction of a nonzero helicity light quark sea asymmetry within a global QCD analysis. By performing a simultaneous extraction of the unpolarized and helicity PDFs, we are also able to extract for the first time in a self-consistent manner the polarizations of the light sea quarks $\Delta \bar{u}/\bar{u}$ and $\Delta \bar{d}/\bar{d}$.

Backup

Three-loop Splitting Functions

The three-loop unpolarized and polarized non-singlet anomalous dimensions from off shell operator matrix elements 31

J. Blümlein^a, P. Marquard^a, C. Schneider^b and K. Schönwald^c

https://arxiv.org/abs/2107.06267

Calculated non-singlet splitting functions at three-loops

First three-loop calculation for the non-singlet transversity splitting function

Chiral Anomaly in DIS

The role of the chiral anomaly in polarized deeply inelastic scattering I: Finding the triangle graph inside the box diagram in Bjorken and Regge asymptotics

Andrey Tarasov 1,2 and Raju Venugopalan 3

The role of the chiral anomaly in polarized deeply inelastic scattering II: Topological screening and transitions from emergent axion-like dynamics

Andrey Tarasov 1,2 and Raju Venugopalan 3

https://arxiv.org/abs/2008.08104 https://arxiv.org/abs/2109.10370

Chiral anomaly provides dominant contribution to g_1 in the Bjorken $(Q^2 \rightarrow \infty, x_{Bj} \text{ fixed})$ and Regge $(x_{Bj} \rightarrow 0, Q^2 \text{ fixed})$ limits.

g_T contribution in SIDIS (2021)

The $g_T(x)$ contribution to single spin asymmetries in SIDIS

Sanjin Benić,¹ Yoshitaka Hatta,^{2,3} Abhiram Kaushik,¹ and Hsiang-nan Li⁴

