

Rahul Shankar (UniFe and INFN) Maximillian Vitz (RWTH Aachen) Paolo Lenisa (UniFe and INFN)

What's in here...

Stages of the Experiment^[2]

COSY Storage Ring

- Uses only magnetic fields to confine ions
- Spin Precession w.r.t ion momentum
- RF Wien filter to increment planar angle proportional to EDM

PTEDM Storage Ring

- Combines electrostatic and magnetic confinement
- "Frozen" spin through finetuning of E and B fields
- Natural increment via E field

Pure Electrostatic Ring

- Uses only Electrostatic confinement
- "Frozen" spin through finetuning of E field, momentum and radius.
- Natural increment via E field

Strategy for EDM Measurement in PTEDM ring

The presence of intrinsic particle properties introduces precession.

 \therefore for particles in the storage ring:

Magnetic Dipole Moment \Rightarrow Horizontal Polarization

Electric Dipole Moment \Rightarrow Vertical Polarization (in the presence of a radial E field)

Università degli Studi di Ferrara

Measurement concept

- Inject particles in storage ring
- 2 Align spin along momentum (\rightarrow freeze horiz. spin-precession)
- 3 Search for time development of vertical polarization

The Prototype EDM Ring Lattice

BMAD Prototype lattice ver 3.0

Ŀ---

Scanning the Parameter Space

Spin Coherence Time

Time taken for the resultant spin vector of all the particles in a bunch to reduce to 1/e of its initial value due to decoherence.

For the desired accuracy of EDM measurements at the prototype ring, it is desirable to have a SCT of above $1000 \ s$. [2]

/orking Point: $Q_x = 1.823, Q_y = 1.123$

Data Point:

 $\xi_x = 2.0, \xi_y = -3.5$

Scanning the Parameter Space

Vorking Point: $Q_x = 1.723, Q_y = 1.12$

Data Point:

 $\xi_x = 0.5, \xi_y = -5.5$

Small Translations^[4]

Maximum Spin Coherence Times

Maximum Spin Coherence Times

Vorking Point: $Q_y=1.1$

Data Point:

 $\xi_x, \xi_y @ t_{max}$

Università degli Studi di Ferrara

Maximum Spin Coherence Times

Working Point:

 $Q_x = 1.82$

Data Point:

 $\xi_x, \xi_y @ t_{max}$

Università degli Studi di Ferrara

Transformations from the second seco

Role of Synchrotron Frequency

/orking Point: $Q_x = 1.823, Q_y = 1.12$

Data Point:

 $\xi_x = 2.0, \xi_y = -3.5$

Role of Synchrotron Frequency

Idealized single particle tracking

Introduce small momentum offset in z direction

Measure frequency of longitudinal particle motion

Compare with oscillation of total spin of a bunch

Role of Synchrotron Frequency

Data Point:

$$\xi_x = 0.0, \xi_y = 0.0$$

Role of Synchrotron Frequency

/orking Point: $Q_x = 1.996, Q_y = 1.123$

Data Point:

 $\xi_x = 0.0, \xi_y = 0.0$

Role of Synchrotron Frequency

Working Point:

 $Q_y = 1.123$

Data Point:

 $\xi_x, \xi_y @ t_{max}$

Working Point			Ratio of			
Q_x	$Q_{\mathcal{Y}}$	S_z	S_x	Ζ	S _{beam}	S _{beam} /z
1.723	1.123	311.706	156.166	156.159	312.181	1.999123
1.773	1.123	1111.34	557.396	557.402	1097.65	1.969225
1.823	1.123	1453.81	729.568	729.567	1452.58	1.991017
1.873	1.123	1664.41	834.267	834.26	1667.84	1.999185
1.923	1.123	1794.94	897.222	897.219	1792.04	1.997327
1.996	1.123	1863.92	932.123	932.14	1855.62	1.99071
		Single	Particle Tra	Bunch Tracking		

Role of Synchrotron Frequency

Working Point:							
$Q_x = 1.823$	Working Point		Frequency of				Ratio of
Data Point:	Q_x	Q_y	S_z	S_{x}	Z	S _{beam}	$ S_{beam} /z$
$\xi_x, \xi_y @ t_{max}$	1.823	1.023	1471.02	737.38	737.29	1477	2.003282
	1.823	1.123	1453.81	729.568	729.567	1452.58	1.991017
	1.823	1.223	1416.42	713.916	714.035	1424.5	1.995

What if we could change the synchrotron frequency?

But...

Data Point:

$$\xi_x = 0.0, \xi_y = 0.0$$

Results so far...

- The maximum value of SCT in each working point seems to depend on some variables:
 - $\circ Q_x$
 - $\circ Q_y$ (not so much?)
 - $\circ \xi_x$ and ξ_y (not zero?)
 - Resonances (Horizontal only?)
 - o Gamma transitions

Future work

- To explore other working points in this lattice...
- To explore other improved Lattices...
- To develop a theoretical understanding of the relationship of SCT with parameters...
- To use data from COSY precursor run to validate hypotheses and draw new inference on relationships.
- Suggestions?

References

- 1. Paolo Lenisa, Storage Rings for the Search of Charged Particle Electric Dipole Moments, Talk presented at 107th Plenary ECFA meeting (November 2020).
- 2. CPEDM Collaboration, Storage Ring to Search for Electric Dipole Moments of Charged Particles: Feasibility Study, CERN-PBC-REPORT (December 2019)
- **3**. A. Lehrach, S. Martin and R. Talman, *Design of a Prototype EDM Storage Ring*, Proceedings of Science, PoS SPIN2018, 144, 2018.
- 4. Max Vitz, Simulation and optimization of the spin coherence time of protons in a prototype EDM ring, Master thesis submitted to RWTH Aachen University (October 2020).

Thank you...!

Contact: shankar@fe.infn.it