Charged pion analysis

Simulation - Acc. X Rec. efficiency with dead map

> Korea Univ. Jaehee Yoo

2019. 06. 20 Radiation lab. meeting

Dead map

DC, PC, RICH for Run15

2

DC dead map

PC dead map

side*108 + zPad

4

RICH dead map

phiPMT

EMCal Distribution

10 20 30 40 50 60 70 80

0

90

zldx

EMCal Warnmap Check

10 20 30 40 50 60

70 80

90

zldx

zldx

7

EMCal hit distribution for Simulation

20 30 40 50 60

80 90

zldx

Acc. X Rec. efficiency

Without EMCal warnmap & Fiducial cut

1. Single pi± generation

- Number of Pi± : 5,000,000 for each charge
- 0 < momentum < 20 GeV/c
- -0.5 < eta < 0.5
- 0 < pi < 2π
- Primary Vertex = (0,0,0)

Using Run15 without dead channels of DC, PC, RICH for test

2. Generated pions

3. Reconstructed pions

4. Compare with run13.

Generated pions

Reconstructed π^-

Acc. X Rec. efficiency for π⁻

Reconstructed π^- without RICH n1 cut

Acc. X Rec. efficiency for π^- without RICH

Reconstructed π^+

Acc. X Rec. efficiency for π^+

Reconstructed π^+ without RICH n1 cut

Acc. X Rec. efficiency for π^+ without RICH

Comparision of masked EMCal warnmap or not

Fiducial cut

Comparision of masked EMCal warnmap or not

plan

1. Run QA	
2. calribration	
- EMCal gain matching (carried norbert)	
- PC calibration	
3. Event selection	
- Convincing evidences	
of each cuts.	
4. Suvival rate true events	
Background rejection power	
4.1 trigger efficeiency calculation	
4.2 Simulation and recon_eff	12.01 ~ 05.07
5. Luminosity study	05.07 ~ 05.14
6. Cross section as function of	05.14 ~ 06.14
pT compare with π^0	
7. A _N spin anaysis +-	06.14 ~ 08.14
8. Systematic error	08.14 ~ 09.14
9. Preliminary	???

Thank you.

Back up

Drift Chamber for PHENIX

Main purpose:

- Precise measurement of the charged particle's momentum

- Gives initial information for the global tracking in PHENIX

- Acceptance:
- 2 arms 90° in $\phi\, each$
- ±90 cm in Z
- 0.7 units of $\boldsymbol{\eta}$
- Location:
- Radial :2.02<R<2.48 m
- Angular:
 - West: $-34^{\circ} < \phi < 56^{\circ}$
 - East : $125^{\circ} < \phi < 215^{\circ}$

Plotted at 04.11.51 on 14/01/03 with Garfield version 6.34

Drift field configuration

Specific field configuration around **anode wire** called drift region is created by "field forming" wires:

- Cathode Wires Create uniform drift field between anode and cathode
- Field Wires Create high electric field strength near the anode wire
- Back Wires –

Stop drift from one side of the anode wire

■ Gate Wires – Also create high field near the anode wire, Localize the drift region width

x-axis [cm]

Drift Field Configuration

- Here is what happens when the charged particle passes through the wire cell
- Note that only even wires collect charge due to the back wires that block the odd anode wires !
- Back wires solves left-right ambiguity problem
- -> But if High pT particle going through near anode wire region, left right 206 ambiguity one more (fake) track might be reconstructed.

Electron drift lines from a track Cell: New wire configuration Particle: 300 equally spaced points Gas: C.H. 50%, Ar 50%, T=300 K, p=1 atm -AXIS Cm] 207.5 Track 0 206.5 0 O Ô Drift 0 region

0.4

0.8

1.6

x-Axis [cm]

1.4

0

-0.2

0.4

-0.6

4

Anode wire region

- define φ_{pair} angle
- If we require very narrow $\phi_{opening}$ angle of track pair and opposite sign, pair by fake and real track will survive.

-> we can know anode wire position if drawing ϕ_{pair} distribution.

