

"Vibration Analysis of Mo-100 Targets for Accelerator Based Mo-99 production"

Bhavini Singh Keith Woloshun Eric Olivas Carlos Miera Patrick Lance Nadezda Draganic Taylor Roybal

8th High Power Targetry Workshop (HPTW2023) November 6th-10th, 2023

RIKEN Nishina Center for Accelerator-based Science, Wako, Saitama, Japan

LA-UR-23-32114

This work was supported by: USDOE NNSA Office of Material Management and Minimization (NA-23)

Managed by Triad National Security, LLC, for the U.S. Department of Energy's NNSA.

Electron irradiation of Mo-100 targets to produce Mo-99

Heart scan using Mo-99 based imaging isotope Tc-99m

Producer accelerator facility

Velocity into Electron beam irradiates Mo-100 discs separated by fixed gap Electron beam irradiates Mo-100 discs Pressurized helium gas flows through disk gaps to cool them.

Broken Mo-100 disk

- 20% disk breakage during cold flow testing
- Possibility of radioactive contamination
- Mo-100 disks expensive to produce
- Cause of disk failure needs to be investigated

Hypothesis: Increased flow induced vibrations coupled with disk rotation is leading to disk failure.

Accelerator-based Mo-99 Production

Target design and reduced order experiments

Laboratory set-up

Test section	Effective total	Reynolds number
mass flow (g/s)	mass flow (g/s)	(disk channels)
60	326	11200
75	402	13800

Image and signal processing for vibration frequency

TIONAL LABORATOR

Microphone and displacement sensor signal processing

Quantify damage to disks

High flow rate, small window gap and enriched Mo disks result in higher mass loss

Enriched and natural Mo disks

Simulations: window gaps > 1.04 mm can lead to excessive window heating making it susceptible to yield and

Simulations by Eric Olivas

Longer duration testing approximates up to 5% (25 g) mass loss over 6 days of irradiation

More vibration after > 3 hours of testing

Correlations for mass loss and microphone measurements

7

Updated target design, preliminary tests & future work

Original spacer lamination

Less vibrations and negligible mass loss with updated spacer lamination design

Future work:

- Run more long duration tests with new and old laminations
 - Assess correlations between microphone and imaging data
 - Provide recommendations on installation and use of microphone
 - Correlate disc wear to mass loss
 - Improve projected mass loss over long duration tests

Findings:

Diagnostics provided quantitative evidence of factors leading to mass loss.

A larger window gap and adding contact area between spacer laminations and discs significantly reduced mass loss.

This work was supported by: USDOE NNSA Office of Material Management and Minimization (NA-23)