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Outline
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Mu2e radiative cooling tungsten target

• 8 kW beam power at 8 GeV resonant extracted protons

• 1 year operational lifetime (~ 40 weeks/year)

• Designed for replacement with remote handling 

equipment

• Optimized for stopped muon production

• Operating in FY 2026

Mu2e experiment, target & support
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Production Target and 
Production Solenoid 
(produces pions and muons)

Transport Solenoid
(converts pions to muons, 
removes background)

Detector Solenoid 
(negative muons are 
stopped, registration
of electrons)

Stopping 
Target (Al)

8-GeV (Mu2e)



• Core is wire EDMed from single rod

• Longitudinally segmented cylinder:

– 6.3 mm diameter

– 160 + 60 mm length

• Longitudinal fins (4)

– 1 mm thick

– 13 mm high (each)

• Spokes

– 1 mm diameter

• Fabrication challenge

• Expensive

WL10 (W 1% wt. La2O3) Target
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• Mu2e-doc-4305, RAL

Emissivity: Tungsten
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Pure Tungsten Hayman2 target

• ~ 620 W absorbed power

• 1150 ~ 1200 ˚C

Time Structure & Target Temperature 
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• At low temperature, tungsten is 

relatively inert

• At high temperatures, it forms 

highly volatile oxides leading 

recession of the material.

• Residual water vapor, oxygen, 

CO2 and CO are all significant 

components of the residual gas 

in the Mu2e vacuum system. 

• Allowable 0.1 mm surface 

recession per operational year 

(40 weeks)   

  ➔ 4.38e-7 g/cm2/min

Allowable recession rate of tungsten target
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TDR operating point

Current 



Recrystallization Temperature
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Source: Plansee, “Tungsten material properties and alloys”

• Recrystallization temperature varies for tungsten by production method, generally 1100~1400˚C

• Thermal cycling may lead randomly oriented small grains merging into directly oriented larger 

grains

– Increase ductile to brittle transition temperature

– Increase susceptibility to radiation damage

– Increase susceptibility to crack initiation and growth



• Emissivity

– Coating

– Material change

• Structure

– Cooling area

– Thermal stress

– Creep

• Fabrication

– Conventional

– 3D print

Approaches for optimization 
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Goverging thermal equation
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𝑃 = 𝜎 ×  𝜀 ×  𝐴 × (𝑇4 − 𝑇𝑏
4)

• P = Energy Deposition from the Protons in the Target

– Absorber Power (P) is between 600 and 700 Watts.

• σ = Stefan-Boltzmann constant (5.67x 10-8 W/m2* K)

• ϵ = emissivity  (temperature dependent)

• A = surface area of the target

• T = temperature of the target

• Tb
 = temperature of the surroundings (about 305 K , 90 F)

➔

• Takeaway: only two parameters can be adjusted to change 

the target temperature with constant power input, ϵ & A.



Mu2e Target Evolution 
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Various FNAL/ RAL iterations with fins (nfins = 3 to 18) 
to augment cooling with increased surface area
during 2018.   Includes the T1 Milestone target 
(CRR in April 2018) (rightmost blue target)
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Starting in 2018 Analysis included emissivity as a 
function of temperature, non-uniform 
time dependent Energy Deposition (Edep) (380 msec 
of Edep, 1.02 sec of no heating).



High emissivity coating: SiC
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Source: Mu2e-doc-8376, “Final Report on the Design of the Mu2e Pion Production Target”, STFC Rutherford  Appleton Laboratory, 2017

SiC coating:
When heated in a vacuum at 10-4 Torr, an active oxidation prevails.
➔ A volatile oxide is formed leading to recession of the SiC layer.

The nominal beam power on rod target is identified by the dashed red line



Texture 

coating
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• CVD coating by 

Ultramet (CA, USA)

• ε ~ 1/T4:

Tungsten ~ 1200˚C

WonW RMS50 ~ 1000 ˚C 

• W on W coating strong 

bond



Comparison of the hemispherical (0.6-40 µm wavelength) emissivity of the pure Re and W-25 wt% Re 

sample with literature data. The RMS roughness is indicated in the legend and expressed in microns.

– Source: Brodu and et al, “Influence of roughness and composition on the total emissivity of tungsten, rhenium and 

tungsten–25% rhenium alloy at high temperature”, Journal of Allys and Compounds 585 (2014) 510-517 

W25%Re: emissivity
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• ε ~ 1/T4:

Tungsten ~ 1200˚C

W25%Re ~ 1100 ˚C 



W25%Re: Creep behavior
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1% (wt.) La2O3

26% (wt.) Rhenium

Recrystallized tungsten

Stress relieved at 1000 C for 6hrs

(Source)

Boron doped

Plansee W-VM Potassium

Compared creep curves of tungsten at 975 ˚C and 20 MPa 



W25%Re: other properties
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W-25Re W WL10

Density 19700 kg/m3 19250 kg/m3 19250 kg/m3

Ultimate Tensile Strength at RT 2100 MPa 980 MPa ~980 MPa

Poison’s Ratio 0.29 0.284 ~0.284

Young’s Modulus of Elasticity 
at RT

400 GPa 390 GPa ~390 GPa

Brinell Hardness at RT 500 BHN 2750 BHN ~2750 BHN

Melting Point 3027 °C 3410 °C ~3410 °C

Thermal Conductivity at RT 70 W/mK 167 W/mK ~167 W/mK

Heat Capacity at RT 140 J/kg K 134 J/kg K ~134 J/kg K

Recrystallization Temperature 1750 K 1350 K 1500 K

• Tungsten is alloyed with rhenium to obtain greater ductility and a lower brittle-to-ductile 

transition temperature. In addition, tungsten-rhenium also has a higher recrystallization 

temperature and better creep resistance. 

• Tungsten is dopped with lanthanum oxide, WL10, to improve its creep resistance and 

increase the recrystallization temperature.



Reduce Thermal Stress 

Zunping Liu | HPTW 202317

• Melting, Tungsten melting temperature ~ 3500 K

• Before melting, it creeps -- soften leading to plastic deformations and low 

mechanical stresses.  

– Creep is a function of Temperature, Stress, and Time.  Strain, ϵ, described by 

Norton Creep Law:  

• Stress to the 0.9 power

• Time to the 0.3 power

• Constant B = 0.4, Q = 122 kJ/mol for 1% La2O3 doped W.

• Conclude:  Support target to minimize mechanical stress.

• Thermal Stresses.  

– Parts that heat up are constrained by those that heat up less, resulting in 

thermal stresses. 

– Thermal Stress can be reduced by separating the core elements and giving 

the hot part room to expand:



Reduce Thermal Stress (cont.)
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• Thermal Stresses.  

– Parts that heat up are constrained by those that heat up less, resulting in 

thermal stresses. 

– Thermal Stress can also be reduced by distributing heat load in such a way to 

decreasing thermal gradient:

• Fabrication -- Challenge



Fabrication
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• Fabrication

– Hayman 2 (Expensive & not fail-to-safe)

– Optimization proposal

• Segments can be made individually and assembled as a unit. Failure of individual 

segment won’t affect performance of other segments. 

– Assembly and support to be detailed

• Core of segments may be hollowed with various diameter to evenly distributed 

thermal load. 

• 3D printing is possible



• The current design of the Mu2e target should work as 

predicted

• There are rooms to optimize it:

– Coating: W on W RMS-50 

– Material change: W 26% Re

– Structure-wise: Assembly of individual segments

• Various thickness, or 

• Various hollow diameter

– Fabrication

• Conventional EDM with less cost, or

• 3D printing

Take-away
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Thanks! 
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• Appreciate input from Kevin Lynch & Steve Werkema



Backup slides
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Beam Timing Structure
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Booster cycle rate 
15 Hz

8 Spills 8 SpillsBeam Off

1200 ms

380 ms
43.1 ms

8 transfers 
per MI cycle

Main Injector cycle time

Booster cycle rate 
20 Hz



Target lifetime requirements drive a higher vacuum
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Mu2e beam
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• Target diameter

• Target length

• Target position

• Target angle

• Beam profile

• Etc.

Optimized target for muon yield at the stopping target
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6.3 mm diameter

8 mm diameter



Radiation Damage
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* Brian Hartsell mars calculation for the RADIATE collaboration, www.radiate.fnal.gov

   Source: Mu2e-doc-25791



• Radiation Damage:

– Very large DPA (Displacement Per Atom).

– Production of Hydrogen and Helium within the Tungsten Material.

– No test prior to operation

Radiation Damage
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* Brian Hartsell mars calculation for the RADIATE collaboration, www.radiate.fnal.gov

  (Source: Mu2e-doc-25791)



Modify target material to improve creep resistance
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Pure tungsten

WL10 (Tungsten 
doped with 1% 
wt. La2O3



Specimen for ML10 mechanical properties
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Note: 
1. Make sure these fillet radius are tangent to the lines drawn at 10.3 degrees. 
2. The angle 10.3 degree is acceptable, and it could be down to 10.18 degree.

Ref: ASME B593 Standard Test Method for Bending Fatigue ...



Krouse Type Specimen
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Ref: ASME B593 Standard Test Method for Bending Fatigue ...



High emissivity coating: SiC
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Source: Mu2e-doc-8376, “Final Report on the Design of the Mu2e Pion Production Target”, STFC Rutherford  Appleton Laboratory, 2017

7.7

1250

1700

SiC coating:
When heated in a vacuum at 
10-4 Torr, an active oxidation 
prevails.
➔ A volatile oxide is formed 
leading to recession of the SiC 
layer
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