

The High-Power Beam Dump System for the **BigRIPS** separator

Yasuhiro Togano for the BigRIPS team

RIKEN Nishina Center

8th High Power Targetry Workshop (HPTW2023), 6-10 November 2023, RIKEN

The BigRIPS Separator: Produce & Separate Exotic Nuclei

SRC

BigRIPS

The BigRIPS Separator: Produce & Separate Exotic Nuclei

Requirements for BigRIPS Beam Dumps

⁷⁰Zn @ 345 MeV/nucleon (Almost) DC beam Range in Cu: 8.3 mm Small beam spot: $\sigma \leq 5 \text{ mm}$ Beam power : ~20 kW \rightarrow heat flux: > 100 MW/m² \rightarrow heat density: >10 GW/m³

Key for beam dumps = **Removal of localized heat**

Water Cooled Beam Dumps for BigRIPS

3 different beam dumps around the first dipole magnet

Water Cooled Beam Dumps for BigRIPS

3 different beam dumps around the first dipole (D1) magnet

Exit Dump at Maintenance Position

Exit Dump at Maintenance Position

CuCrZr alloy → Radiation hardness

- V shape: enlarge beam spot on the surface
- Cooled by water in screw tubes 3-mm below surface
 - Screw tube: better heat transfer than flat tubes

Cooling water 1 MPa, ≤ 10 m/s

Pillow sealing

Exit Dump in May 2023

Recent Incident: Molten Mark on Dump

Torn surface

Copper

Caterpillar

~2 mm

May 2023

Not found before autumn 2022

December 2022 Direct ⁷⁰Zn beam for Acc. tuning Max beam intensity = 670 pnA = 16.2 kW**Caterpillar position**

~ Position of direct ⁷⁰Zn beam

Thermal simulation of direct ⁷⁰Zn beam by finite-element method

Tube surface T_2 $Max = 356^{\circ}C$

Preliminary Thermal Simulation

Spot size: $\sigma_x = 1.5 \text{ mm}, \sigma_y = 3.6 \text{ mm} \leftarrow \text{Beam profiles btw. SRC \& FO}$

Position: -6 mm in vertical direction → **Beam hits bottom plate** ⁷⁰Zn range in dump: 8.3 mm

Molten Mark on Dump by ⁷⁰Zn Beam

Torn surface

Caterpillar like structure

- Caterpillar → Molten mark by ⁷⁰Zn beam
 - Why not violently burned out?
- Torn surface \rightarrow deposition of Cu vapor
 - Torn due to sudden cooling
- Causes: beam conditions & water flow
 - vertical position: 6 mm below the center
 - size: smaller than expected
- Water flow speed was 6 m/s.
- We will keep using this exit dump
 - No water & vacuum trouble
 - ~2 years to build new exit dump

- The beam dumps of BigRIPS

 - 3 different beam dumps inside and downstream of first dipole magnet. < 20 kW beams have been intercepted.
- Found a molten mark on the exit beam dump in 2023.
 - The ⁷⁰Zn beam irradiated in the autumn 2022.
 - Shift of vertical position + Small spot size + slow water flow speed.
 - Keep using this dump at least in 2 years.
- New exit dump is under development to cope with ~160 kW beams
 - Future upgrade of RIBF

Summary and Outlook

Backup slides

Heat Flux Depends on Hit Positions

60 MW/m² ~ surface of the sun

Temperature measurement with ⁴⁸Ca

Thermal conductivity of CuCrZr: 320 W/m K http://conductivity-app.org

Beam spot size (mm²)	1.9 x 23.6	3.0 x 27.2	
Heat Flux (MW/m²)	53.5	29.9	
			200 -
Max temp (°C)	310	273	<u>ତ</u> 150 -
Max temp at water pipes (°C)	156	172	C Temperature
Max temp at thermocouple (°C)	197	177	$\begin{bmatrix} 50\\ 0\\ -30 \end{bmatrix}$

New Exit Dump: Rotating Drum

Smaller heat flux by effectively enlarging the beam irradiated area

300mm φ CuCrZr alloy 72 M8mm Screw tubes 100~200 rpm

Good cooling capability Radiation damage: ~0.3 DPA/day

Pressurized water to rotating object

Large acceptances

 $\Delta\theta = \pm 40$ mrad, $\Delta\phi = \pm 50$ mrad, $\Delta p/p = \pm 3\%$

Beam Intensity & Water Temp. during Accelerator Tuning

