

Survivability of proton beam degraders and beam stops: experience at Brookhaven Linac Isotope Producer

Dmitri G. Medvedev¹, Dohyun Kim¹, Sumanta Nayak², Steven Bellavia², James Reeves², Deepak Raparia², Cathy S. Cutler¹

¹Isotope Research and Production Department, ²Collider Accelerator Department,

Brookhaven National Laboratory, Upton, NY, USA

8th High Power Targetry Workshop, RIKEN Waco campus, Japan

6-10 November, 2023

Brookhaven Lab and its accelerator complex

200 MeV Linac at BNL

- A 459-foot-long LINAC with 9 accelerator RFQ cavities
- Operates in a pulsed mode: >90% of the pulses are used for isotope production, the rest is used for HEP experiments
- The pulses for BLIP occur at frequency 6.67 Hz. Each pulse is 550 µsec long and can be up to 60 mA in intensity
- Energy is incrementally tunable from 10 to 200 MeV, with 66 MeV the lowest practical energy for isotope production
- Maximum average current of 165 µA is regularly achieved, 200 µA demonstrated
- Rastered and focused beam capability

Energy slots occupation by targets at BLIP*

*Both Ge-68 and Sr-82 are currently produced by commercial supplies

Brookhaven Linac Isotope Producer (BLIP) target station

D. Medvedev et al., 8th High Power Targetry Workshop (HPTW2023)

Realtime monitoring of targets' integrity

High energy target irradiation at BLIP – 33 kW of beam power

FIG. 4. Configuration of the 181 MeV proton irradiation experiment of graphite grades.

- About 200 MeV of proton energy is stopped by water, targets and degraders
- Water irradiation needs to be minimized
- Conventional isotope production with protons require energy below 100 MeV: some energy degradation is required as high as 60 MeV
- The choice of the materials is governed by:
 - Thermal conductivity and melting point
 - Activation profile
 - Density and stopping power
 - Resistant to water
 - · Inexpensive and easy to machine
 - Do not present additional hazard upon disposal as radioactive material

D. Medvedev et al., 8th High Power Targetry Workshop (HPTW2023)

Materials used at BLIP for energy degradation

Item	Aluminum	Copper
Thermal conductivity and melting point	\checkmark	\checkmark
Density	low	\checkmark
Activation products: gamma emitters	Na-22: 1274 keV (99.9%) Na-24: 2754 keV (99.9%)	Co-60: 1173.23 (99.9%) 1332 (99.9%)
Cost	\checkmark	\checkmark
Machining	\checkmark	\checkmark
Water resistance	\checkmark	\checkmark

Copper vacuum degraders to reduce emissions: 10 kW

	density	thickness		Energy	watts at
Material in Beam	(g/cm^3)	inches	(mm)	deposited (MeV)	165 µA
Copper degrader window	8.96	0.377	9.5758	29.14	4808.1
Vacuum	0.00	1.636	41.554	0.00	0.0
Copper degrader window	8.96	0.376	9.550	33.20	5478.0

What happens in beam after ~230000 μ A-h

Total received beam	230326uAh
Total beam-on-target time	1516.95hours
Total beam days	63.21days
Avg. current	151.84uA

Brookhaven National Laboratory D. Medvedev et al., 8th High Power Targetry Workshop (HPTW2023)

Tested approaches

- Ni coating of copper surface did not really help (163,000 μA-h picture to the right)
- Isolation in Inconel capsule under He worked for solid pucks

Potential solutions

- Use Helium, not vacuum, to fill the empty space inside the degrader to improve cooling
- Use multiple solid puck Inconel encapsulated degraders. Minuses: increased emissions, more items to keep track of, easy to confuse with isotope targets
- Improve cooling system major upgrade
- Other materials?

Benchmarking of theoretical calculations for beam stop

- Beam Current = 165µA
- Heat Load on Cu = 5612.54 watt, front window = 297.53 watt, back window = 0.00 watt
- Cu degrader is welded under He.

Heat generation profile for raster beam Raster 12.5mm/5.5mm (4:1) Beam FWHM 10.5mm

Melting point of Cu = 1083 ^oC Melting point of Inconel = 1290 - 1350^oC Critical Heat Flux = 2.17 W/mm²

*courtesy of Sumanta Nayak

Cooling upgrade: new target drive and water system*

 Larger pumps and an increase in the size of supply pipes from 6 x 0.75-inch to 2 x 2-inch resulting in 3 fold increase in flow

Acknowledgement

- The MIRP program is funded by the US DOE Isotope program
- BLIP operators:
 - Henryk Chelminski
 - Lisa Muench
 - David O'Rourke

