

Thermal diffusivity of tungsten irradiated by protons in spallation environment up to 26.5 dpa

Hossein Sina, Yong Dai, Yongjoong Lee, Michael Wohlmuther

HPTW 2023, RIKEN, JAPAN

2023-11-09

1 ESS target design

- 2 Importance of PIE on the target material
- 3 LFA measurement details
- 4 Data calibration
- 5 Data analysis for high dose samples
- 6 Effect of post irradiation annealing

European Spallation Source (ESS)

A partnership of 13 European countries - located in Lund, Sweden

ESS Target Design

A helium cooled rotating target wheel

ESS Target Design

A target wheel consisting of Tungsten bricks

Table 45. Target wheel parameters.						
Parameter	Units	Value				
Wheel diameter	m	2.5				
Number of sectors		36				
Sector periphery	m	0.218				
Rotational speed	rpm	23.3				
Energy/Pulse	kJ	357				
Temp. rise/Pulse	°C	100				

One of the 36 segments of the target wheel with W bricks

Thermal diffusivity is observed to decrease significantly in irradiated tungsten which results in larger thermal stresses in the material

Knowledge of Radiation impact on thermal diffusivity of Tungsten is crucial to achieve a target with designed availability

PIE experiments

Irradiated samples preparation

As a part of STIP-V campaign, W plates (1×10×60 mm) were irradiated by high energy protons and secondary neutrons at Swiss Spallation Neutron Source (SINQ)-PSI

Samples with different doses were studied

Sample	Displacement per atom	Irradiation temperature	He content	H content	Activity of Hf-178
	[dpa]	[°C]	[appm]	[appm]	[MBq]
19A-R5	4.4	121	180	1010	2.3
16-R5	6.9	172	305	1615	3.2
19B-R5	9.5	214	410	2375	4.0
18-R5	25.1	501	1150	6375	11.5
21-R5	26.5	534	1225	6845	12.5

Laser Flash Analysis (LFA)

* J. Habainy, Y. Dai, Y. Lee, S. Iyengar, Thermal diffusivity of tungsten irradiated with protons up to 5.8 dpa, JNM. 509 (2018) 152–157.

Detector

Protective tube

Signal-to-noise ratio for the sample with unpolished surface

The detector signal was also compared for the polished-coated vs. unpolished-uncoated samples

The detector signal intensities for the polished and un-polished samples were **comparable** with reasonable signal-to-noise ratios

Profilometry for the sample with unpolished surface

Profilometry of EDM surface with a wavy-like pattern

Data calibration for the samples with rough surfaces

To minimize the <u>uncertainties due to the rough (EDM) surface</u> for high dose samples, a calibration was made on an unirradiated EDM-cut sample (unpolished, uncoated)

Data analysis

LFA results for **unirradiated** samples after thickness calibration

ess

LFA results for **irradiated** samples after thickness calibration

- Drastic reduction of the thermal diffusivity as a result of irradiation
- ✓ Such a drop is attributed to Re formation and also displace damage
- ✓ Thermal diffusivities of three high dose samples are almost overlapping, independent of the damage dose and test temperature
- ✓ The threshold level for the high dose samples is marginally smaller than that for the low dose samples
- ✓ The uncertainty ranges overlap for the two data sets

Data analysis

LFA results for irradiated samples after post irradiation annealing

- ✓ 4.4 & 26.5 dpa samples were annealed at 1000 °C for one hour
- \checkmark Thermal diffusivity was partially recovered by the annealing
- Such a recovery can be attributed to the reduced density of radiation induced lattice defects
- The recovery level was smaller for the high dose samples compared to that for the low dose samples
- ✓ This difference can be due to higher irradiation temperatures in the high dose samples.

Thank you for your attention!