

Microstructures, strengths of **Al6061-T6** after irradiation in SINQ Target-13

Peng Song, Yong Dai (PSI), Hossein Sina, Michael Wohlmuther (ESS)

HPTW2023, RIKEN, Wako, Japan 09.11.2023

Content

- I. Backgrounds & Objective
- **II.** Material & irradiation conditions
- **III. Results**
 - 1) Microstructures before irradiation
 - 2) Microstructures after irradiation
 - 3) Tensile test results
- **IV. Conclusions**

Background

Europe Spallation Source (ESS)

Proton Beam Window (PBW)*:

- 1. Suffer from high-fluence protons (2 GeV)
- 2. Low scattering of proton beam (<1%)
- 3. Thickness less than 1.25 mm

*R. Vivanco, et al. IOP Conf. Series: Journal of Physics: Conf. Series 1021 (2018) 012065

Materials applied to PBW

Requirements :

- 1. Good radiation tolerance
- 2. Good thermal conductivity
 - 3. Light atoms
 - 4. Good strength

Al alloys: Al6061-T6 for ESS (5 MW)

AlMg₃ for SINQ (1.4 MW)

A15083 for MLF (1 MW)

Max. p-fluence: 8.6×10²⁵ p/m² *Max.* 8.5 dpa

Objective

<u>Radiation-induced changes in</u> <u>tensile properties of Al alloys</u>*

Radiation-induced swelling as a function of Fast fluence

*Performance of Aluminum in Research Reactors, K. Farrel, Oak Ridge

Objective: Microstructures of Al6061-T6 after neutron or proton irradiation?

Content

I. Backgrounds & Objective

II. Material & irradiation conditions

III. Results

- 1) Microstructures before irradiation
- 2) Microstructures after irradiation
- 3) Tensile test results

IV. Conclusions

Material:Al6061-T6

Irradiation conditions

	Irrad. T	Dose	He	H	Test T
Specimen	(°C)	(dpa)	(appm)	(appm)	(°C):
7-LT-N20	~ 62	10.1	455	1095	~ 32
7-LT-N19	~ 62	10.1	455	1095	~ 152

7-LT-N20: As-irradiated7-LT-N19: Irradiation + annealed (Irrad.+ ann.)

- I. Backgrounds & Objective
- **II. Material & irradiation conditions**

III. Results

- 1) Microstructures before irradiation
- 2) Microstructures after irradiation
- 3) Tensile test results

IV. Conclusions

Microstructures before irradiation: big precipitates

Microstructures before irradiation: Needle-shaped

Averaged length: 22.1 ± 10.3 nm

Number density: $(1.7 \pm 0.8) \times 10^{22} \text{ m}^{-3}$

Microstructures after irradiation: general view

Perfect type: 1/2<110> Faulted frank type: 1/3<111>

Project plane: fcc Al (110)

PAUL SCHERRER INSTITUT

Microstructures after irradiation: loops & precipitates

g/B vectors	1/2[1 1 0]	1/2[-1 1 0]	1/2[0 1 1]	1/2[0 1 -1]	1/2[1 0 1]	1/2[-1 0 1]
[1 1 -1]	2	0	0	2	0	-2
[-2 0 0]	-2	2	0	0	-2	2
[-1 1 -1]	0	2	0	2	-2	0

pole 011 **g = 11-1**

pole 011 **g=-200**

pole 011 g=-11-1

PAUL SCHERRER INSTITUT

B vectors: 1/3[1 1 1] 1/3[1 1 -1] 1/3[1 -1 -1] 1/3[1 -1 1]

Asirrad.

Microstructures *after irradiation*: bubbles inside grain

Under focus ~ -640 nm

Irrad.+ann. $2.5 \pm 0.5 \text{ nm}$ 50 nm $2.5 \pm 0.5 \text{ nm}$ $\sim 1.7 \times 10^{23} \text{ m}^{-3}$ Diameters of He bubbles, nr

Under focus \sim -750 nm

Microstructures *after irradiation*: bubbles at GBs

Tensile test results

	As-received	As-received	As-irradiated	As-irradiated
	@ 22 °C	@ 147 °C	@ 32 °C	@ 152 °C
Yield stress, MPa	230	230	260	227

Conclusions

		Needle-shaped	Small round	Frank loops	Perfect loops
	Size, nm	22.1 ± 10.3	6.0 ± 1.2	×	×
As-received	Density, m ⁻³	$(1.7 \pm 0.8) \times 10^{22}$	$(6.6 \pm 4.5) \times 10^{21}$	×	×
As-irradiated	Size, nm	11.6 ± 3.8	4.8 ± 1.9	7.9 ± 2.8 nm	19.7 ± 8.6 nm
	Density, m ⁻³	$\sim 4.3 \times 10^{21}$	~9.6 × 10 ²¹	$(6.3 \pm 1.5) \times 10^{21}$ m ⁻³	~1.0 × 10 ²²
As-irradiated + annealing	Size, nm	30.8 ± 15.9	4.1 ± 0.9	×	56 ± 20
	Density, m ⁻³	$(2.5 \pm 0.1) \times 10^{22}$	$(4.2 \pm 0.7) \times 10^{21} \text{ m}^{-3}$	×	~9.9×10 ¹⁹

Length distribution of needle-shaped precipitates

Thanks a lot for your attention!

PAUL SCHERRER INSTITUT

Discussion

As-received

As-irradiated

Irradiated + annealed

Size distribution of needle-shaped precipitates

Microstructures before irradiation

Al-alloys for PBW applications

Al-alloy: Al 6061-T6

Irradiation in STIP-7 (Target-10, 2013-14)

		2
Inconel 718 (for LANSCE, SNS)	p-flu.	1.6x10 ²⁵ /m
Al alloys (for ESS, SINQ, MLF)	Dose	10.1 dpa
Ti-Al-V alloys	Не	455 appm
High Entropy Alloys (HEAs)	Н	1095 appm
	T _{irr}	62°C

to be finalized

9.5x10²⁵/m

n-flu.