
Pb-Liquid Target
Opportunities
• Known liquid-Pb / LBE thermo-hydraulics
• Cooling outside vacuum chamber.
• Radioisotopes mostly retained.
• No degradation of target material.
• Synergies between different projects at

CERN such as FCCee.
Challenges
• Liquid-Pb containment vessel and

windows (material, temperatures, DPA).
• MHD interaction.
• Cavitation-induced erosion.
• Temperature and dynamic effects.
• Dynamic multi-phase flow simulation

complexity.
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Introduction
• Muon colliders offer enormous potential for research of the particle physics frontier. Leptons can be accelerated without suffering large synchrotron radiation losses.
• In the core of the Muon Collider facility lays a MW class production target, which will absorb a high power (1 to 3 MW) proton beam to produce muons via pion decay.
• The target must withstand high dynamic thermal loads induced by 2 ns pulses at 5-50 Hz. Also, operational reliability must be guaranteed to reduce target exchanges to a minimum.
• Different target technologies with different levels of technological maturity are being explored.
• An overview of the different target technologies is presented, as well as details about the target-systems engineering design for a C-Target option.
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Conclusions
• Three different target concepts being explored. C-Target is baseline option and being used for the Front-hand target systems conceptual design and physics optimization.
• Heavy liquid metal target and a W fluidized target concepts are also being explored. Presenting a promising technological prospect for a 3-4 MW Muon Collider facility.
• In parallel to the target developments, the surrounding systems (shielding, beam windows and other) are being studied.

C-Target
Target Concept
• Based on the CNGS target, which operated
up to 520 kW but could operate up to 750 kW.
• 80 cm isostatic graphite rod (1.79 nuclear
inelastic scattering lengths).
• Internal Titanium vessel filled with static helium (1 bar) to enhance natural

convection and minimize graphite sublimation.
• Cooling water flowing between internal and external vessel.
• Water cooled tungsten shielding.
• The whole assembly will be surrounded by a superconductive solenoid.

W-Fluidized Target
Advantages
• No cavitation, corrosion, radiochemistry

damage.
• High thermal-shock resistance.
• Heat removal.
Challenges
• Erosion management & powder handling.
• Reduced experience in operational facilities
Offline tests at RAL & HiRadMat beam test
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CFD modelling of the
Pb curtain concept.

Conceptual designs
• Pipe flow.
• Vertical curtain.
• Jet stream.

Response of various size
spherical tungsten particles to
2x1011 p+ at HiRadMat (CERN)

Test rig built and
operated at
Rutherford
Appleton
Laboratory from
2009-2018

C-Target systems

Dynamic response
• Case assessed: sigma = 5 mm / 5Hz.
• Maximum energy density: 173 J/cm3/pulse.
• Natural convection and radiation cooling

considered.
• Dynamic stress waves assessed through the

explicit thermo-mechanical solver LS-Dyna.
• Acceptable response due to large beam sigma

and reduced interaction length.

Fluka Monte Carlo & Thermodynamic
Parametric Analysis
• Parametric study on beam sigma and

pulse frequency.
• Rod radius kept proportional to three times

the beam sigma.
• Considered the worst-case scenario: only

radiation cooling (No natural convection
around the target).

Cooling assessment via CFD
• Cooling & design optimization via CFD.
• Target vessel cooled by Helium at 3 m/s.
• Heat from graphite diffused by radiation

+natural convection.

Maximum temperature and power
deposition for 1.5 MW as function of the
beam sigma. Thermal simulations run in
ANSYS Mechanical for a radiation-only
cooled target (No natural convection
around the target).

.

Principal stresses over time, which
result following a single beam impact

from a steady state initial condition.
(At the most stressed point).

CFD computation of the static
helium natural convection inside
the target vessel.

Shielding design
• Tungsten shielding (23 tonnes).
• Most of the thermal energy is deposited on the shielding

(34 %). The energy deposited on the target is 5.6 %.
• Donut + Pie blocks due to manufacturing limitations & to

ease assembling.
• Longitudinal slots for locking & alignment pins.
• Helium cooled.
• Inner holes for bulk cooling. Inlet plenum for flow

distribution.
• Outer layer with Boron carbide and H2O moderator.
• Routing and integration challenging inside SC Solenoid

cryostat.

Shielding optimization
• With neutron absorber, DPA reaches

values of 8×10-4 DPA after 1 year.
• However, due to less W the Ionizing

dose increases: >70 MGy after 10
years (3 cm H2O).

Beam windows
• Location: p+ window outside cryostat

assembly for better accessibility
(maintenance, replacement, etc).

• Fatigue: extensive load cycles to be
experienced by the target & windows
(108/y) at very high temperature.

• DPA: radiation damage may reach
high values (>1 dpa) depending on
material.

• High power deposition: e.g. 50-650
W (0.1 – 1 mm) for Titanium.

• Possible strategies: windowless,
blown-up beam somewhere upstream,
dual bunch, rotating window “dilution”,
frequent window exchange.

Double window concept cooled
with helium

Shielding cooling assessment
• Numerical analytical code to run across

different parameters (flow, pressure,
dimensions) to choose optimum operational
point.

• Subsequent CFD calculation.
He plenum

He return
outlet

H2O
moderator

Inlet guide
plate &
tubes

Boron
carbide

Conceptual design of shielding
cooling vessel

CFD calculation of shielding cooling


