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Introduction

* Muon colliders offer enormous potential for research of the particle physics frontier. Leptons can be accelerated without suffering large synchrotron radiation losses.

* In the core of the Muon Collider facility lays a MW class production target, which will absorb a high power (1 to 3 MW) proton beam to produce muons via pion decay.

» The target must withstand high dynamic thermal loads induced by 2 ns pulses at 5-50 Hz. Also, operational reliability must be guaranteed to reduce target exchanges to a minimum.
« Different target technologies with different levels of technological maturity are being explored.

 An overview of the different target technologies is presented, as well as details about the target-systems engineering design for a C-Target option.
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Known liquid-Pb / LBE thermo-hydraulics  No cavitation, corrosion, radiochemistry
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Synergies between different projects at Challenges
CERN such as FCCee. « Erosion management & powder handling.

Challenges * Reduced experience in operational facilities
Liquid-Pb containment vessel and Offline tests at RAL & HiRadMat beam test
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Conclusions

« Three different target concepts being explored. C-Target is baseline option and being used for the Front-hand target systems conceptual design and physics optimization.
* Heavy liquid metal target and a W fluidized target concepts are also being explored. Presenting a promising technological prospect for a 3-4 MW Muon Collider facility.
* In parallel to the target developments, the surrounding systems (shielding, beam windows and other) are being studied.
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