

ISOCHORIC BEAM DEPOSITION FOR ASTEROID DEFLECTION

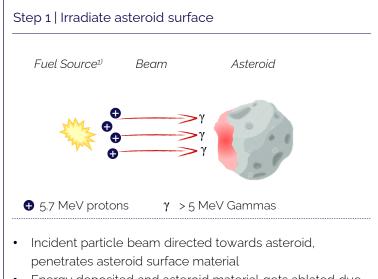
MELANIE BOCHMANN - OuSoCo KARL-GEORG SCHLESINGER – OuSoCo CHARLES ARROWSMITH – Oxford University GIANLUCA GREGORI – Oxford University

AGENDA

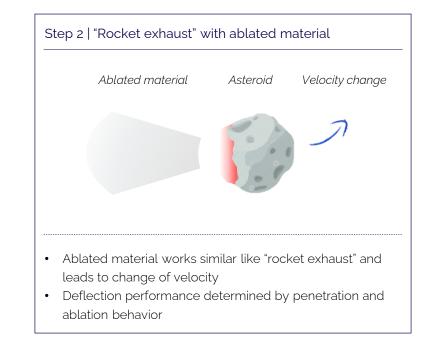
1

2

3


BACKGROUND AND MOTIVATION

CONCEPT & EXPERIMENTAL GOALS


MATERIAL RESPONSE REGIMES

ASTEROID DEFLECTION WITH ISOCHORIC BEAM DEPOSITION

The deflection maneuver takes advantage of a proprietary method to generate a particle beam in space

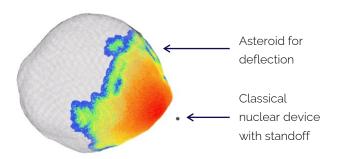
• Energy deposited and asteroid material gets ablated due to incident particle beam

BENEFITS COMPARED TO OTHER ASTEROID DEFLECTION METHODS

Higher level of prediction accuracy for orbital maneuver

Several orders of magnitude higher efficiency

HIGH LEVEL OF PUBLIC INTEREST


Recent missions create public awareness and provide valuable data for benchmarking

BENCHMARKING AGAINST CLASSICAL NUCLEAR DEVICES

Nuclear explosives are still considered the most efficient asteroid deflection mechanism

EXEMPLARY SIMULATIONS RESULTS ON NUCLEAR DEVICES

Horan IV, Holland, Bruck Syal, Bevins, Wasem. "Impact of neutron energy on asteroid deflection performance." *Acta Astronautica (183)*, 2021: 29 - 42.

POSSIBLE CONCLUSIONS FOR PLANETARY DEFENSE

The New York Times

How a Nuclear Bomb Could Save Earth From a Stealthy Asteroid

An atomic blast is not the preferred solution for planetary defense, but 3-D models are helping scientists prepare for a worst-case scenario.

The Government Says We Should Use Nukes to Deflect Asteroids

That's better than just blowing up the space rocks, according to tests.

TECHNOLOGY

The Plans to Use Nuclear Weapons to Blow Up Incoming Asteroids For real.

UNIQUE FEATURES OF OUSOCO'S DEFLECTION SCHEME

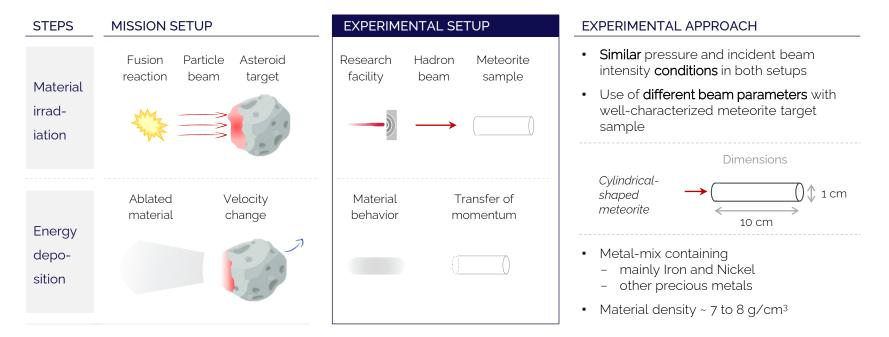
The concept can be clearly distinguished from a weapons technology

 \checkmark

More efficient than classical nuclear devices

 \checkmark

Safe mechanism and NOT a weapons technology


Legally compliant with international treaties

 \checkmark

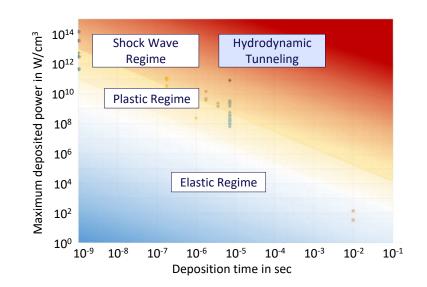
Allows for lab-based testing

EXPERIMENTAL SETUP

The particle beam conditions can be tested at CERN HiRadMat and results benchmarked against other deflection schemes

MATERIAL RESPONSE REGIMES

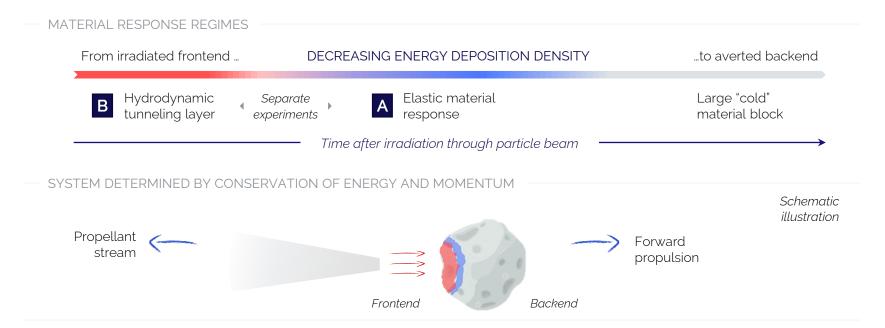
The goal of the experimental setup is to implement a fully dynamical scale model of the asteroid deflection maneuver


EXPERIMENTAL
OBJECTIVE

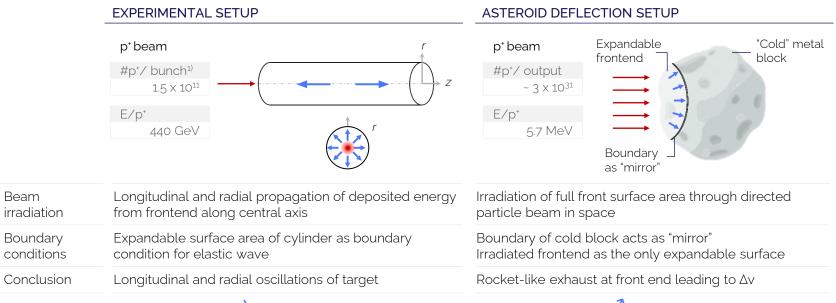
- Measure transfer of momentum
- Gather underlying data across different
 material response regimes

EXPERIMENTAL TUNING PARAMETER

- Deposited energy density
- Variation through number of bunches (i.e. #protons per beam)


SELECTED SUPPORTING REFERENCE Pasquali, M., et al. "Dynamic response of advanced materials impacted by particle beams: the MultiMat experiment." *Journal of Dynamic Behavior of Materials 5 (2019): 266-295.*

REGIMES OF MATERIAL RESPONSE


LAYERS OF MATERIAL RESPONSE

The peak of energy deposition density – with hydrodynamic tunneling – is at the irradiated frontend of the object

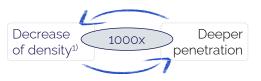
A ELASTIC REGIME (1/2)

One part of the experimental campaign aims at further understanding the elastic material response regime

Recalculate (experimental) oscillations into asteroid's riangle v

Beam

A ELASTIC REGIME (2/2)


The Δv contribution from the elastic regime alone is comparable to the full effect of a classical nuclear device

PRELIMINARY VALUES FOR TARGET SAMPLE			FIRST ASSESSEMENT		SELECTED REFERENCES		
Assumption: "cold" material temperatures				tures	Experimental target sample Torregosa, et al.		e
Changes expected for experimental setting			Surface oscillations:	m/s	"Experiment exposing refractory metals to impacts of 440 GeV/c proton beams for the future design of the CERN		
Ma	aterial	Density	Young's Modulus	Frequency (longitudinal)	Asteroid deflect	ion maneuver	antiproton production target: Experiment design and online results." <i>Physical Review Accelerators and</i>
Iror	n	7.9 g/cm ³	200 GPa	150 kHz	∆v _{elastic} :	cm/s	Beams 22 (2019): 013401.
Nic	ckel	8.9 g/cm ³	200 Gpa	150 kHz	Δv contribution p elastic regime	purely from	Torregosa et al. "Scaled prototype of a tantalum target embedded in expanded graphite
Go	ld	19.3 g/cm ³	70 Gpa	50 kHz	Further simulations needed Detailed target characterization before/after experiments		for antiproton production: Design,
	anium	4.5 g/cm ³	170 Gpa	180 kHz			manufacturing, and testing under proton beam impacts." <i>Physical Review Accelerators and</i> <i>Beams 21 (2018): 073001.</i>

B HYDRODYNAMIC TUNNELING (1/2)

Hydrodynamic tunneling involves phases transitions and significant density depletion

FEATURES			
Energy deposition density	10 ⁴ – 10 ⁵ J/cm ³		
Occurrence of phase transitions	e.g. to liquid or gas		
Substantial density depletion, exemplary from solid metal to gas ¹⁾			

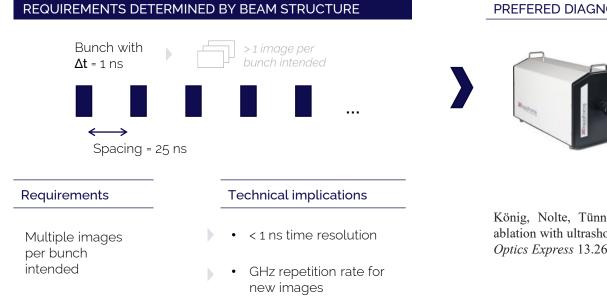
EXEMPLARY SIMULATIONS RESULTS				
	Target ma	terial:	copper	
	Beam size:		0.2 mm	1
	p+ energy	δρ	#Bunch	Accelerator
	440 GeV	0.8 m	108	SPS
	7 TeV	35 m	2808	LHC
	50 TeV	350 m	10600	FCC

EXEMPLARY SIMULATIONS DESLIFTS

SELECTED REFERENCES

Nie, Y., et al. "Numerical simulations of energy deposition caused by 50 MeV— 50 TeV proton beams in copper and graphite targets." *Physical Review Accelerators and Beams 20.8 (2017):* 081001.

Tahir, Naeem Ahmad, et al. "Beam induced hydrodynamic tunneling in the future circular collider components." *Physical Review Accelerators and Beams 19.8 (2016): 081002.*


B HYDRODYNAMIC TUNNELING (2/2)

Hydrodynamic tunneling is expected due to the beam parameters and conditions of the surrounding medium

ITERATIVE	E STEPS	SIMULATIONS CODE SELECTED REFERENCES	
	Beam irradiation J J J Energy deposition in target	Montecarlo, e.g. FLUKA	Han, Pengfei, et al. "Numerical Study on Asteroid Deflection by Penetrating Explosion Based on Single-
Shift of Bragg- Peak	↓ Sublimation of material ↓	Hydrocode, e.g. ALE	Material ALE Method and FE-SPH Adaptive Method." <i>Aerospace 10.5 (2023): 479</i> .
	Determination by conditions of surrounding medium	Hydrocode, e.g. ALE	Bertarelli, Alessandro. "Beam-induced damage mechanisms and their calculation." <i>arXiv preprint arXiv:1608.03056</i> (2016).
	Significant decrease of density		
	Failed material expelled	SPH Code	urxiv preprint urxiv.1008.05050 (2010).

B HYDRODYNAMIC TUNNELING - DIAGNOSTICS

Requirements on the diagnostics are derived from the beam structure

PREFERED DIAGNOSTICS SETUP

- ICCD camera system combined with ultra-short pulse Laser system
- GHz. IR sensitive Laser for density profile

König, Nolte, Tünnermann. "Plasma evolution during metal ablation with ultrashort laser pulses." Optics Express 13.26 (2005): 10597-10607.