The Shielding Flask System at Super-FRS

F. Amjad*, C. Karagiannis, E. Kozlova , M. Duchene, H. Weick

GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany

Introduction

- The Superconducting Fragment Separator (Super-FRS) [1] at the Facility for Antiproton and Ion Research (FAIR) at GSI Darmstadt is a large acceptance in-flight separator for exotic nuclei, with planned commissioning for early science in 2027.
- The Super-FRS target area beamline inserts (plugs) will be activated due to the production of rare isotopes of all elements up to uranium via fission or fragmentation in flight.
- The shielding flask enables the essential remote transfer of plugs between the beamline and hot cell, ensuring smooth facility operation and operator safety.
- The Super-FRS flask is designed and manufactured in cooperation with Bilfinger Noell GmbH.

What Is Transported by the Shielding Flask and Where?

The Super-FRS shielding flask system will remotely handle **21 plugs** in total, which can be categorized into **7 distinct types** based on their dimensions and weight.

In the Super-FRS target hall, a total of **28 interface** locations are designated for accommodating the flask and facilitating remote handling.

The remote handling operation includes positioning, lifting, securing, transportation, lowering and storage of the plugs.

Shielding Flask System components

ITEM	Weight	H x L x W	Shielding Thickness
Shielding Flask	56 Tons	5.6m x 4.3m x 2.5m	upto 35 cm
Support Platform	22 Tons	2m x 8m x 3m	10 cm
Park Cell Frame	15 Tons	1.2m x 2.8m x 2.8m	20 cm
Test Load	8-10 Tons	0.8m x 1.5m x 1.3m	N-R

Project status and challenges

- Flask components are presently in production with delivery scheduled for Q4-2024.
- Extended FAT and SAT testing may be necessary due to the intricate interface positions and stringent positioning precision demands.
- Both FAT and SAT require complete assembly and disassembly of the flask.
- Flask SAT and commissioning is contingent on the availability of Super-FRS beamline components and scheduling.
- The supplier will develop a control system with customized software interface that will undergo rigorous testing, including adjustable hoisting sequences.

References

- H. Geissel, H. Weick, M. Winkler, et al., The Super-FRS project at GSI, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volume 204, 2003, Pages 71-85s
- 2. Amjad F, Weick H, Mattila J, et al. Survey on Remote Handling Logistics for Super-FRS. International Journal of Advanced Robotic Systems. 2013;10(10). doi:10.5772/56848 Facility for Antiproton and Ion Research in Europe GmbH | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Radiation Environment

- The Super-FRS beam catcher plugs beam interacting parts will have residual dose rates up to 7 Sv/h [2]. These can be safely transported using shielding flask with wall thickness up to 35 cm.
- The tunnel's working platform region is a restricted area with a high prompt dose rate, exceeding 500 mSv/h. Consequently, the target area is shielded with iron and concrete.
- After a four-month cooldown period, the work platform area measures 5-50 μSv/h. To facilitate the positioning of the flask on top of the beamline, the support platform is equipped with a 10 cm thick shielding plate.

Shielding Flask Design Attributes

- The Germany KTA standards are taken as guidelines for the shielding flask system design.
- The flask hoisting drive is equipped with redundancy features and has a lifting capacity of up to 10 tons.
- The gripper is equipped with an actuator, end switches, a wireless camera, optional lighting, and mechanical features to ensure precise positioning and guidance.
- The support platform is used to position the flask on beamline.
- The park cell frame is used to position the flask on top of the pillow seal park cell position and serves as a base for commissioning and testing the flask hoisting system every three years.
- 92 Remote hoisting sequences with variable speed, are programmed into flask control system to handle Super-FRS target area plugs.
- The control system offers both touchscreen, joy stick, and panel button operation.
- The control system has control and managerial interlocks ensure the shielding flask safe operation.
- The control system offers both "semi-automatic" and "manual" operation modes to accommodate regular and emergency situations. Additionally, it includes "configuration" and "testing" modes specifically designed for flask commissioning and Testing.

