Present status of cavitation damage mitigation techniques for the mercury target vessel at J-PARC pulsed spallation neutron source

Takashi Naoe, Hiroyuki Kogawa, Takashi Wakui, Koichi Saruta, Makoto Teshigawara, Hidetaka Kinoshita, Katsuhiro Haga

J-PARC Center, Japan Atomic Energy Agency

Contents

- Background and motivation
- Cavitation damage mitigation techniques
- Target diagnostic system
- Improvement of beam window cutting for damage inspection
- Correlation between damage and acoustic vibration
- Comparison between measured and predicted damage depth
- Summary

Background and motivation

Beam energy is $40 \mathrm{~kJ} /$ pulse at $1 \mathrm{MW}, 2.4 x$ higher than SNS at the same power

Cavitation erosion of used target vessel
\rightarrow Developing and upgrading cavitation damage mitigation techniques

Developing and upgrading cavitation damage mitigation techniques

Gas microbubbles injection

- Suppress pressure wave by gas (2012~) microbubbles ($R_{b}<150 \mu \mathrm{~m}, \alpha>0.01 \%$) - Effects depends on radius and void fraction

Absorb thermal expansion by contraction of microbubbles

Double walled structure at beam window

Target diagnostic system by acoustic vibration measurement

PARC

Control
 gas flow rate for microbubble injection

- LDV and microphones are installed to monitor the status of gas microbubble through the beam-induced acoustic vibration

Change in acoustic vibration by bubble injection

Scale of pressure wave mitigation by bubble injection

> Bubble effect $=$ $\mathrm{B}_{\mathrm{e}} \quad \begin{gathered}\text { Equivalent power } \\ \text { under bubbling }\end{gathered}$ Operational beam power

Bubble effect $=1$ denotes bubble is not working Less value means higher mitigation effect

Trend of beam power and bubble effect during user operation

- Reduction of sound amplitude related to the gas flow rate is used for as an index of bubble effect ($\mathbf{B}_{\mathbf{e}}$)
- \mathbf{B}_{e} is high and fluctuated in target \#9 because gas flow rate is low and unstable
- B_{e} for targets \#10, \#14, \#13 are good, and almost stable by improving gas flow rate independent of beam power

Improvement of beam window cutting

Target \#13 Aug. 2023 After 68 days after operation Avg. power: 851 kW Total energy: 2273 MWh

Difference of erosion damage by bubble effect

- Damage on bulk side correlated with the bubble effects obtained by sound measurement
- Damage is concentrated around center, is seemed to be growing along polishing mark (surface finish will be improved)

Prediction model construction for damage depth

Empirical equation for depth prediction

based on off-beam damage experiment

T. Naoe, et al., J. Nucl. Mater. 468 (2016)

$$
\begin{aligned}
D_{\text {max }} & =f\left(P_{\text {equiv. }}, N\right) \\
& =a\left(B_{e} P\right)^{b} N^{c}
\end{aligned}
$$

Damage depth can be predicted from beam power, \boldsymbol{P}, number of pulses, \boldsymbol{N}, and bubble effect $\boldsymbol{B}_{\boldsymbol{e}}$

- Measured damage depth for target \#13 is smaller than that of predicted depth, that may be caused by improvement of local void fraction around the beam window
- As a conservative estimation, the damage without penetrating inner wall,

1 MW 4000 hours (1 year) operation is acceptable ($\mathrm{D}_{\max }<4.7$ for $\mathrm{B}_{\mathrm{e}}=0.28$, $\mathrm{D}_{\max }<1.4$ based on \#13)
1 MW 8000 hours (2 years) operation may acceptable predicted damage based on $\# 13$ observation ($\mathrm{D}_{\max }<4.7$ for $\mathrm{B}_{\mathrm{e}}=0.28$)

- Mercury target vessel for J-PARC pulsed neutron source is gradually updated to mitigate the pressure wave induced cavitation damage on interior surface.
- No cavitation erosion were observed on narrow channel surfaces, independent of the beam power and operation period.
- Damage depth of cavitation on the bulk side surface faced bubbly mercury was mitigated correlated with the bubble injection defined as the bubble effect (\mathbf{B}_{e}) estimated by the beam-indued acoustic vibration measurement.
- 1 year operation at $1 \mathrm{MW} /$ pulse (designed life) will be acceptable when the damage mitigation by bubble injection acts as same with the target \#13.
- Further improvement of the bubble generator to increase bubble void fraction is applied for target \#15, and its optimization will be continued.

