Present status of cavitation damage mitigation techniques for the mercury target vessel at J-PARC pulsed spallation neutron source

Takashi Naoe, Hiroyuki Kogawa, Takashi Wakui, Koichi Saruta, Makoto Teshigawara, Hidetaka Kinoshita, Katsuhiro Haga

J-PARC Center, Japan Atomic Energy Agency

8th High Power Targetry Workshop, Nov. 6-10, 2023

Contents

- Background and motivation
- Cavitation damage mitigation techniques
- Target diagnostic system
- Improvement of beam window cutting for damage inspection
- Correlation between damage and acoustic vibration
- Comparison between measured and predicted damage depth
- Summary

8th High Power Targetry Workshop, Nov. 6-10, 2023

2

Background and motivation

Issue for achieving the high-power stable operation at 1 MW in long term

Beam energy is 40 kJ/pulse at 1 MW, 2.4x higher than SNS at the same power \rightarrow Developing and upgrading cavitation damage mitigation techniques

8th High Power Targetry Workshop, Nov. 6-10, 2023

Cavitation erosion of used target vessel

Developing and upgrading cavitation damage mitigation techniques

Gas microbubbles injection

- Suppress pressure wave by gas (2012~) microbubbles (R_b <150 µm, α > 0.01%)
- Effects depends on radius and void fraction

8th High Power Targetry Workshop, Nov. 6-10, 2023

Target diagnostic system by acoustic vibration measurement

Change in acoustic vibration by bubble injection

- **B**_e is high and fluctuated in target #9 because gas flow rate is low and unstable

8th High Power Targetry Workshop, Nov. 6-10, 2023

Trend of beam power and bubble effect during user operation

Reduction of sound amplitude related to the gas flow rate is used for as an index of bubble effect (B_e)

• Be for targets #10, #14, #13 are good, and almost stable by improving gas flow rate independent of beam power

Improvement of beam window cutting

Target #13 Aug. 2023 After 68 days after operation Avg. power : 851 kW Total energy : 2273 MWh Total dose : max. 1.8 dpa

Drill machine with annular cutter

Initial constraints

Horizontal cut to prevent mercury spilling Dry cut for remote handling

Dry cut T_{max}: 180°C

Friction heating by dry cut leads difficulties of cutting (2011~2015)

Cut with lubricant T_{max}: 81°C

Water base **lubricant** reduce friction heating but increase of tritium release (2017~2019)

Semi-dry cut T_{max}: 150°C

- **Semi-dry cut** with grease on surface **coating** to reduce tritium release and mitigate friction hearing (2020~)
- Adopted **center drill** to ensure extract cutout specimens (2023)

Temp. monitor

Difference of erosion damage by bubble effect

8th High Power Targetry Workshop, Nov. 6-10, 2023

Prediction model construction for damage depth

Empirical equation for depth prediction

based on off-beam damage experiment

T. Naoe, et al., J. Nucl. Mater. 468 (2016)

$$D_{max} = f(P_{equiv.}, N)$$
$$= a(B_e P)^b N^c$$

Damage depth can be predicted from beam power, **P**, number of pulses, **N**, and bubble effect **B**_e

a,b,c: constants to correlate off-beam experiment with actual damage are gradually updating based on damage data with bubble

- local void fraction around the beam window
- As a conservative estimation, the damage without penetrating inner wall, 1 MW 4000 hours (1 year) operation is acceptable (D_{max}<4.7 for B_e=0.28, D_{max}<1.4 based on #13)

Predicted depth, mm

• Measured damage depth for target #13 is smaller than that of predicted depth, that may be caused by improvement of

1 MW 8000 hours (2 years) operation may acceptable predicted damage based on #13 observation (D_{max}<4.7 for B_e=0.28) 8th High Power Targetry Workshop, Nov. 6-10, 2023

Summary

- Mercury target vessel for J-PARC pulsed neutron source is gradually updated to mitigate the pressure wave induced cavitation damage on interior surface.
- No cavitation erosion were observed on narrow channel surfaces, independent of the beam power and operation period.
- Damage depth of cavitation on the bulk side surface faced bubbly mercury was mitigated correlated with the bubble injection defined as the bubble effect (B_e) estimated by the beam-indued acoustic vibration measurement.
- 1 year operation at 1 MW/pulse (designed life) will be acceptable when the damage mitigation by bubble injection acts as same with the target #13.
- Further improvement of the bubble generator to increase bubble void fraction is applied for target #15, and its optimization will be continued.

10

Thank you for your attention !

