

Transverse structure of the Nucleon

Hyun-Chul Kim

Department of Physics, Inha University Incheon, Korea

5th Japan-Korea PHENIX/sPHENIX/EIC Collaboration Meeting

Oct. 12, 2019@Sejong Univ, Seoul

Spin structure of the Nucleon

Naive Understanding of the Nucleon Spin

- A nucleon consists of two up and one down quarks.
- Nucleon spin: 1/2
- Quark spin: 1/2

Nucleon spin should come from the three quarks:

Picture in the NRQM

Figure taken from Eur. Phys. J. A (2016) 52: 268

Spin Crisis in 1988

A Measurement of the Spin Asymmetry and Determination of the Structure Function g(1) in Deep Inelastic Muon-Proton Scattering European Muon Collaboration (J. Ashman (Sheffield U.) et al.). Dec 1987. 7 pp. Published in Phys.Lett. B206 (1988) 364

CERN-EP-87-230 DOI: <u>10.1016/0370-2693(88)91523-7</u> Conference: <u>C94-01-05.1</u>, p.340-346 <u>Proceedings</u> <u>References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote</u> <u>CERN Document Server; ADS Abstract Service</u> Data: <u>INSPIRE | HepData</u>

Detailed record - Cited by 2094 records 1000+

$\Delta \Sigma \sim 0.15$ ($\Delta \Sigma_{\rm NRQM} = 1$)

What's wrong with the NRQM?

$$\Delta \Sigma = g_A^0 = \Delta u + \Delta d + \Delta s$$

Sea-quark polarization

Spin structure of the nucleon

 $\Delta \Sigma |_{\mathrm{DIS}} = 0.33 - 0.36$ Aidala etal, RMP, 85, 655 (2013)

The quark content of the nucleon spin: max(40 %)

Where does the nucleon spin come from?

One VI direction of hadronic physics in the future

Spin structure of the nucleon

 $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_G$

$NRQM \longrightarrow NPQCD$

Figure taken from Eur. Phys. J. A (2016) 52: 268

Transversity of the nucleon

$$\delta \mathbf{q}(\mathbf{x}) = \mathbf{0} - \mathbf{0}$$

 $\langle N \left| \bar{\psi} \sigma_{\mu\nu} \lambda^{\chi} \psi \right| N \rangle \sim \text{Tensor charges}$

- No explicit probe for the tensor charge! Difficult to be measured.
- Chiral-odd Parton Distribution Function can get accessed via the SSA of SIDIS (HERMES and COMPASS).

SIDIS [16] $(0.80 \mathrm{GeV^2})$:	$\delta u = 0.54^{+0.09}_{-0.22} ,$	$\delta d = -0.231^{+0.09}_{-0.16},$
SIDIS [16] $(0.36 \mathrm{GeV^2})$:	$\delta u = 0.60^{+0.10}_{-0.24} ,$	$\delta d = -0.26^{+0.1}_{-0.18},$
Lattice [21] $(4.00 \mathrm{GeV^2})$:	$\delta u = 0.86 \pm 0.13 ,$	$\delta d = -0.21 \pm 0.005 ,$
Lattice [21] $(0.36 \mathrm{GeV}^2)$:	$\delta u = 1.05 \pm 0.16 ,$	$\delta d = -0.26 \pm 0.01 ,$
$\chi QSM (0.36 GeV^2)$:	$\delta u = 1.08 ,$	$\delta d = -0.32 ,$

[16] M. Anselmino et al. Nucl. Phys. B, Proc. Suppl. 191, 98 (2009)[21] M. Goeckeler et al., PLB 627, 113 (2005)

Modern Understanding of the Nucleon

Traditional way of a hadron structure

Traditional way of studying structures of hadrons

Modern understanding of a baryon structure

Today's topic to discuss

State of the art of the nucleon tomography

Figure taken from Eur. Phys. J. A (2016) 52: 268

Modern understanding of a baryon structure

3D Nucleon Tomography

Transverse densities of Form factors

GPDs Nucleon Tomography Structure functions Parton distributions

Modern understanding of a baryon structure

Probes are unknown for Tensor form factors and the Energy-Momentum Tensor form factors!

Nucleon as Nc quarks bound by the pion mean fields

Mean-Field Approximation

Simple picture of a mean-field approximation

Mean-field potential that is produced by all other particles.

- Nuclear shell models
- Ginzburg-Landau theory for superconductivity
- Quark potential models for baryons

Mean-Field Approximation

More theoretically defined mean fields

Given action, $S[\phi]$

 $\left.\frac{\delta S}{\delta \phi}\right|_{\phi=\phi_0}=0: \text{Solution of this saddle-point equation } \phi_0$

Key point: Ignore the quantum fluctuation.

How we can understand the structure of baryons, based on this mean field approach, this is the subject of the present talk.

- * A baryon can be viewed as a state of Nc quarks bound by mesonic mean fields (E. Witten, NPB, 1979 & 1983).
 - Its mass is proportional to Nc, while its width is of order O(1).
 - Mesons are weakly interacting (Quantum fluctuations are suppressed by 1/Nc: O(1/Nc).

Meson mean-field approach (Chiral Quark-Soliton Model)

* Baryons as a state of Nc quarks bound by mesonic mean fields.

 $S_{\rm eff} = -N_c \mathrm{Tr} \ln \left(i \partial \!\!\!/ + i M U^{\gamma_5} + i \hat{m} \right)$

* Key point: Hedgehog Ansatz

$$\pi^{a}(\mathbf{r}) = \begin{cases} n^{a}F(r), n^{a} = x^{a}/r, & a = 1, 2, 3\\ 0, & a = 4, 5, 6, 7, 8. \end{cases}$$

 \rightarrow It breaks spontaneously $SU(3)_{flavor} \otimes O(3)_{space} \rightarrow SU(2)_{isospin+space}$

*Merits of the Chiral Quark-Soliton Model

It is directly related to nonperturbative QCD via the Instanton vacuum.

Natural scale of the model given by the instanton size: $ho pprox (600\,{
m MeV})^{-1}$

 Fully relativistic quantum-field theoretic model (we have a QCD vacuum): It explains almost all properties of the lowest-lying baryons.

 It describes the light & heavy baryons on an equal footing (Advantage of the mean-field approach).

 Basically, no free parameter to fit the experimental data. Cutoff parameter is fixed by the pion decay constant, and Dynamical quark mass (M=420 MeV) is fixed by the proton radius.

system is stabilized

A light baryon in pion mean fields

$$\langle J_B J_B^{\dagger} \rangle_0 \sim e^{-N_c E_{\rm val} T}$$

Presence of Nc quarks will polarize the vacuum or create mean fields.

A light baryon in pion mean fields

$$E_{\rm cl} = N_c E_{\rm val} + E_{\rm sea}$$

Classical Nucleon mass is described by the Nc valence quark energy and sea-quark energy.

An observable for the light baryon

EM Form factors of the Nucleon

Traditional definition of form factors

Traditional definition of form factors

 $G_E^{p,n}(Q^2) \iff \rho_{\rm ch}^{p,n}(r^2)$

Fourier transform

Textbook physics since 1950s.

New Definition

 $\blacktriangleright xP_z$

Ζ.

Quark probabilities inside a nucleon

Transverse charge density

r

Why transverse charge densities?

I

2-D Fourier transform of the GPDs in impact-parameter space

Proton & neutron EM fom factors

Silva, Urbano, HChK, PTEP, 2018

Transverse charge density

Inside an unpolarized nucleon

M. Burkardt, PRD **62**, 071503 (2000); Int. J. Mod. Phys. A **18**, 173 (2003).

G.A. Miller, PRL 99, 112001 (2007)

$$\rho_{\rm ch}^{\chi}(b) = \int_0^\infty \frac{dQ}{2\pi} Q J_0(Qb) F_1^{\chi}(Q^2)$$

Inside an polarized nucleon

Carlson and Vanderhaeghen, PRL 100, 032004

$$\rho_T^{\chi}(b) = \rho_{\rm ch}^{\chi}(b) - \sin(\phi_b - \phi_S) \frac{1}{2M_N} \int_0^\infty \frac{dQ}{2\pi} Q^2 J_1(Qb) F_2^{\chi}(Q^2)$$

Transverse charge densities inside an unpolarized proton

Centered positive charge distribution

Surprisingly, negative charge distribution in the center of the neutron!

Transverse charge densities inside an polarized nucleon

Flavor structure

Flavor structure

Nucleon polarized along the x direction

EM transition form factors of the decuplet

 (ω, \boldsymbol{q}) $(E_{\Delta}, \boldsymbol{0})$ $(E_N, -\boldsymbol{q})$

EM transition FFs provide information on how the Delta looks like.

 EM transition FFs are related to the VBB coupling constants through VDM & CFI.

Essential to understand a production mechanism of hadrons.

Carlson & Vanderhaeghen, PRD 100 (2008) 032004

Multipole patter in the transverse plane

Gravitational Form factors of the pion & Nucleon

Gravitational form factors

 $\delta S = 0$ under Poincaré transform

$$\langle \pi^{a}(p')|T_{\mu\nu}(0)|\pi^{b}(p)\rangle = \frac{\delta^{ab}}{2} [(tg_{\mu\nu} - q_{\mu}q_{\nu})\Theta_{1}(t) + 2P_{\mu}P_{\nu}\Theta_{2}(t)]$$

Gravitational form factors

$$2\delta^{ab}H_{\pi}^{I=0}(x,\xi,t) = \frac{1}{2}\int \frac{d\lambda}{2\pi} e^{ix\lambda(P\cdot n)} \langle \pi^{a}(p')|\bar{\psi}(-\lambda n/2)\dot{n}[-\lambda n/2,\lambda n/2]\psi(\lambda n/2)|\pi^{b}(p)\rangle$$

Gravitational or EMT form factors as the second Melin moments of the EM GPD

$$\int dx x H_{\pi}^{I=0}(x,\xi,t) = A_{2,0}(t) + 4\xi^2 A_{2,2}(t) \quad \Theta_1 = -4A_{2,2}^{I=0} \qquad \Theta_2 = A_{2,0}^{I=0}$$

$$\langle \pi^{a}(p')|T_{\mu\nu}(0)|\pi^{b}(p)\rangle = \frac{\delta^{aa}}{2} \left[(tg_{\mu\nu} - q_{\mu}q_{\nu})\Theta_{1}(t) + 2P_{\mu}P_{\nu}\Theta_{2}(t) \right]$$

 T^{00} : Mass form factor

0

- T^{i0} : Angular momentum
- T^{ij} : Shear force and Pressure

Mechanics of a particle

Stability of a particle: von Laue condition

Stability

Pion: The stability is guaranteed by the chiral symmetry and its spontaneous breakdown H.D. Son & HChK, PRD 90 (2014) 111901

$$\mathcal{P} = \frac{3M}{f_\pi^2 \bar{M}} (m \langle \bar{\psi}\psi \rangle + m_\pi^2 f_\pi^2) = 0$$

Nucleon: The stability is guaranteed by the balance between the core valence quarks and the sea quarks (XQSM).

Stability

 Nucleon: The stability is guaranteed by the balance between the pion and rho mesons (Skyrme picture).

Original Skyrme model

pi-rho-omega model

Cebulla et al., NPA794 (2007) 87

HChK, P. Schweitzer, U. Yakhshiev, PLB 718 (2012) 625 J.H. Jung, U. Yakhshiev, HChK, J.Phys. G41 (2014) 055107

Spin structure of the Nucleon

Tensor form factors

$$\langle N_{s'}(p') | \overline{\psi}(0) i \sigma^{\mu\nu} \lambda^{\chi} \psi(0) | N_{s}(p) \rangle = \overline{u}_{s'}(p') \left[H_{T}^{\chi}(Q^{2}) i \sigma^{\mu\nu} + E_{T}^{\chi}(Q^{2}) \frac{\gamma^{\mu} q^{\nu} - q^{\mu} \gamma^{\nu}}{2M} + \tilde{H}_{T}^{\chi}(Q^{2}) \frac{(n^{\mu} q^{\nu} - q^{\mu} n^{\nu})}{2M^{2}} \right] u_{s}(p)$$

$$\int_{-1}^{1} dx \, H_{T}^{\chi}(x,\xi,t) = H_{T}^{\chi}(q^{2}), \qquad H_{T}^{0}(0) = g_{T}^{0} = \delta u + \delta d + \delta s$$

$$H_{T}^{3}(0) = g_{T}^{3} = \delta u - \delta d$$

$$\int_{-1}^{1} dx \, \tilde{H}_{T}^{\chi}(x,\xi,t) = \tilde{H}_{T}^{\chi}(q^{2}), \qquad H_{T}^{8}(0) = g_{T}^{8} = \frac{1}{\sqrt{3}} (\delta u + \delta d - 2\delta s)$$

$$H_T^{*\chi}(Q^2) = \frac{2M}{\mathbf{q}^2} \int \frac{d\Omega}{4\pi} \langle N_{\frac{1}{2}}(p') | \psi^{\dagger} \gamma^k q^k \lambda^{\chi} \psi | N_{\frac{1}{2}}(p) \rangle$$

$$\kappa_T^{\chi} = -H_T^{\chi}(0) - H_T^{*\chi}(0)$$

Together with the anomalous magnetic moment, this will allow us to describe the transverse spin quark densities inside the nucleon.

Scale dependence

Tensor charges and anomalous tensor magnetic moments are scale-dependent.

$$\delta q(\mu^2) = \left(\frac{\alpha_S(\mu^2)}{\alpha_S(\mu_i^2)}\right)^{4/27} \left[1 - \frac{337}{486\pi} \left(\alpha_S(\mu_i^2) - \alpha_S(\mu^2)\right)\right] \delta q(\mu_i^2),$$

$$\alpha_S^{NLO}(\mu^2) = \frac{4\pi}{9\ln(\mu^2/\Lambda_{\rm QCD}^2)} \left[1 - \frac{64}{81} \frac{\ln\ln(\mu^2/\Lambda_{\rm QCD}^2)}{\ln(\mu^2/\Lambda_{\rm QCD}^2)}\right]$$

 $\Lambda_{\rm QCD}=0.248\,{\rm GeV}$

M. Gluck, E. Reya, and A. Vogt, Z.Phys. C 67, 433(1995).

Comparison with Axial-vector constants

	g_T^0	g_T^3	g_T^8	g^0_A	g_A^3	g_A^8	Δu	δu	Δd	δd	Δs	δs
$\chi QSM SU(3)$	0.76	1.40	0.45	0.45	1.18	0.35	0.84	1.08	-0.34	-0.32	-0.05	-0.01
$\chi {\rm QSM}$ SU(2)	0.75	1.44		0.45	1.21		0.82	1.08	-0.37	-0.32		
NRQM	1	5/3		1	5/3		$\frac{4}{3}$	$\frac{4}{3}$	$-\frac{1}{3}$	$-\frac{1}{3}$	——	

Results

[16] M. Anselmino et al. Nucl. Phys. B, Proc. Suppl. 191, 98 (2009)

[21] M. Goeckeler et al., PLB 627, 113 (2005)

T. Ledwig, A. Silva, HChK, Phys. Rev. D 82 (2010) 034022

Results

Results

Transverse spin density

$$\rho(\mathbf{b}, \mathbf{S}, \mathbf{s}) = \frac{1}{2} \left[H(b^2) - S^i \epsilon^{ij} b^j \frac{1}{M_N} \frac{\partial E(b^2)}{\partial b^2} - s^i \epsilon^{ij} b^j \frac{1}{M_N} \frac{\partial \kappa_T(b^2)}{\partial b^2} \right]$$

 $[\mathbf{S}, \mathbf{s}] = [(1,0), (0,0)], \ [\mathbf{S}, \mathbf{s}] = [(0,0), (1,0)]$

$$\mathcal{F}^{\chi}(b^2) = \int_0^\infty \frac{dQ}{2\pi} Q J_0(bQ) F^{\chi}(Q^2)$$
$$H(b^2) = F_1(b^2), \quad E(b^2) = F_2(b^2)$$

M. Diehl & Ph. Haegler, Euro.Phys. J., C 44 (2005) 87.

Transverse spin density

Up quark transverse spin density inside a nucleon

Transverse spin density

Strange quark transverse spin density inside a nucleon

This is the **first** result of the strange quark transverse spin density inside a nucleon

Spin structure of the Pion

What we know about the Pion

- Pion Mass = 139.57 MeV
- Pion Spin: S = 0

Their structures are simpler than that of the nucleon but messy enough!

The spin structure of the pion

Vector & Tensor Form factors of the pion

x y d d d xP b_{\perp} xP b_{\perp} xP b_{\perp} xP b_{\perp} xP Whinsi

Pion: Spin S=0

Longitudinal spin structure is trivial. $\langle \pi(p') | \bar{\psi} \gamma_3 \gamma^5 \psi | \pi(p) \rangle = 0$

What about the transversely polarized quarks inside a pion?

Internal spin structure of the pion

Comparison with Axial-vector constants

$$\rho_n(b_{\perp}, s_{\perp}) = \int_{-1}^1 dx \, x^{n-1} \rho(x, b_{\perp}, s_{\perp}) = \frac{1}{2} \left[A_{n0}(b_{\perp}^2) - \left(\frac{s_{\perp}^i \epsilon^{ij} b_{\perp}^j}{m_{\pi}} \frac{\partial B_{n0}(b_{\perp}^2)}{\partial b_{\perp}^2} \right) \right]$$

Spin probability densities in the transverse plane A_{n0} : Vector densities of the pion, B_{n0} : Tensor densities of the pion

$$\int_{-1}^{1} dx \, x^{n-1} H(x,\xi=0,b_{\perp}^2) = A_{n0}(b_{\perp}^2), \quad \int_{-1}^{1} dx \, x^{n-1} E(x,\xi=0,b_{\perp}^2) = B_{n0}(b_{\perp}^2)$$

Vector and Tensor form factors of the pion

$$\langle \pi(p_f) | \psi^{\dagger} \gamma_{\mu} \hat{Q} \psi | \pi(p_i) \rangle = (p_i + p_f) A_{10}(q^2)$$

$$\langle \pi^+(p_f) | \mathcal{O}_T^{\mu\nu\mu_1\cdots\mu_{n-1}} | \pi^+(p_i) \rangle = \mathcal{AS} \left[\frac{(p^\mu q^\nu - q^\mu p^\nu)}{m_\pi} \sum_{i=\text{even}}^{n-1} q^{\mu_1} \cdots q^{\mu_i} p^{\mu_{i+1}} \cdots p^{\mu_{n-1}} B_{ni}(Q^2) \right]$$

Gauged effective chiral action

Gauged Effective Nonlocal Chiral Action

$$S_{\text{eff}} = -N_c \text{Tr} \ln \left[i D + im + i \sqrt{M(iD,m)} U^{\gamma_5} \sqrt{M(iD,m)} \right]$$

The nonlocal chiral quark model from the instanton vacuum

- Fully relativistically field theoretic model.
- "Derived" from QCD via the Instanton vacuum.
- Renormalization scale is naturally given.

•No free parameter

 $\rho \approx 0.3 \,\mathrm{fm}, \ R \approx 1 \,\mathrm{fm}$

Dilute instanton liquid ensemble

$\mu \approx 600 \,\mathrm{MeV}$

D. Diakonov & V. Petrov Nucl.Phys. B272 (1986) 457 H.-Ch.K, M. Musakhanov, M. Siddikov Phys. Lett. B **608**, 95 (2005). Musakhanov & H.-Ch. K, Phys. Lett. B **572**, 181-188 (2003)

 $D_{\mu} = \partial_{\mu} - i\gamma_{\mu}V_{\mu}$

EM form factors of the pion

EM form factor (A₁₀) $\langle \pi(p_f) | \psi^{\dagger} \gamma_{\mu} \hat{Q} \psi | \pi(p_i) \rangle = (p_i + p_f) A_{10}(q^2)$

 $\sqrt{\langle r^2 \rangle} = 0.675 \,\mathrm{fm}$ $\sqrt{\langle r^2 \rangle} = 0.672 \pm 0.008 \,\mathrm{fm} \,(\mathrm{Exp})$

$$F_{\pi}(Q^2) = A_{10}(Q^2) = \frac{1}{1 + Q^2/M^2}$$

M(Phen.): 0.714 GeV M(Lattice): 0.727 GeV M(XQM): 0.738 GeV

S.i. Nam & HChK, Phys. Rev. D77 (2008) 094014

EM form factors of the pion

RG equation for the tensor form factor $B_{10}(Q^2, \mu) = B_{10}(Q^2, \mu_0) \left[\frac{\alpha(\mu)}{\alpha(\mu_0)}\right]^{\gamma/2\beta_0}$ $\gamma_1 = 8/3, \gamma_2 = 8, \beta_0 = 11N_c/3 - 2N_f/3$

p-pole parametrization for the form factor

$$B_{10}(Q^2) = B_{10}(0) \left[1 + \frac{Q^2}{pm_p^2} \right]^{-p}$$

S.i. Nam & H.-Ch.K, Phys. Lett. B 700, 305 (2011).

For the kaon, S.i. Nam & HChK, Phys. Lett. B707, 546 (2012)

Spin density of the quark inside a pion

Spin density of the quark inside a pion

Significant distortion appears for the polarized quark!

$m_{\pi} = 140 \text{ MeV}$	$B_{10}(0)$	$m_{p_1} \; [\text{GeV}]$	$\langle b_y \rangle$ [fm]	$B_{20}(0)$	$m_{p_2} \; [\text{GeV}]$
Present work	0.216	0.762	0.152	0.032	0.864
Lattice QCD $[7]$	0.216 ± 0.034	0.756 ± 0.095	0.151	0.039 ± 0.099	1.130 ± 0.265

Results are in a good agreement with the lattice calculation!

Summary & Outlook

Summary

- In the present talk, we aimed at reviewing a certain aspect on the transverse spin structure of the nucleon.
- We discussed first the transverse charge densities and its conceptual difference from the traditional 3D charge densities.
- We briefly discussed the gravitational form factors of the pion and nucleon.
- Finally, we presented recent results of the transverse spin structure of the nucleon and pion.
- Though we haven't shown the kaon, its spin structure was also studied.

Outlook

- The same method can be extended to heavy hadrons.
- Quasi parton distribution (Comparison with the lattice data)
- GPDs of the pion and nucleon
- TMDs of the nucleon
- Wigner functions in the XQSM

To investigate the spin structure of the nucleon, it is essential to use a field-theoretic approach such as the chiral quark-soliton model (both the valence-quark and vacuum polarization effects included).

Though this be madness, yet there is method in it.

Hamlet Act 2, Scene 2

by Shakespeare

Thank you very much for the attention!