

5th Kore-Japan PHENIX/sPHENIX/EIC Collaboration Meeting at Sejong University in Seoul, Korea October 12th, 2019 Yuji Goto (RIKEN/RBRC)

EIC - Electron Ion Collider

- High-energy QCD frontier to study nucleon (hadron) and nucleus (cold nuclear matter) from quarks and gluons
- World's first polarized electron + proton / light-ion / heavy-ion collider
 - Wide (Q^2, x) region
- Electron + proton / light-ion collision
 - Polarized beam
 - e, p, d/³He
 - High luminosity
 - $L_{ep} \sim 10^{33-34} \, \text{cm}^{-2} \text{s}^{-1}$
 - 100-1000 times HERA
 - Collision energy
 - $\sqrt{s} = 20 100 (140) \text{ GeV}$
- Electron + heavy-ion collision
 - Wide range in nuclei

JLEIC at Jefferson Lab

Precision measurement of PDFs

- Inclusive DIS
 - Q² = -q²: large Q² provides a hard scale to resolve partons (quarks and gluons) in the proton
 - Bjorken-*x*: 1D longitudinal motion of partons in the proton

• Spin puzzle

- Gluon polarization measurement with polarized DIS
 - Small Bjorken-*x* region with QCD evolution (DGLAP equation)

$$\frac{1}{2} = \left[\frac{1}{2}\Delta\Sigma + L_Q\right] + \left[\Delta g + L_G\right]$$

 $\Delta\Sigma/2$ = Quark contribution to Proton Spin L_Q = Quark Orbital Ang. Mom Δg = Gluon contribution to Proton Spin L_G = Gluon Orbital Ang. Mom

Precision measurement of PDFs

- Semi-Inclusive DIS (SIDIS)
 - Flavor dependence of the quark polarization
 - Transverse-momentum dependence (TMD): orbital motion of partons in the proton
- TMD distribution function
 - 3D distribution: longitudinal & transverse momentum dependence
 - Correlation of spin and parton's orbital motion

Correlation of the nucleon spin and

Sivers function:

Tomography of the nucleon / nucleus

- EIC = color dipole microscope
 - Exclusive process and diffractive process
 - 3D distribution: transverse spatial distribution

- GPD (Generalized Parton Distribution)
 - Spatial imaging of gluons and quarks = tomography
 - HERA: 1st generation
 - EIC: 2nd generation (high luminosity, heavy ion, polarization)
 - Orbital angular momentum
 - Ji's sum rule

$$J_{q}^{z} = \frac{1}{2} \sum_{q} \Delta q + \sum_{q} L_{q} = \frac{1}{2} \left(\int_{-1}^{1} x dx (H^{q} + E^{q}) \right)_{t \to 0}$$

Tomography of the nucleon / nucleus

- DVCS
 - Deeply virtual Compton scattering

Spatial distribution of sea quarks at EIC 100 fb⁻¹ and corresponding density of partons in the transverse plane

- Meson production
 - Gluon tomography by measuring J/ψ, ' φ, ρ, etc.
 - Precision measurement at large radius with high luminosity

Gluon saturation in e+A collisions

000000-000000

000000

- Gluon emission
 - Divergence at small x
- Gluon recombination
 - Restriction of divergence
- Gluon saturation in balanced
 - Based on classical idea of the saturation
- First observation of a quantum collective gluonic system
 - Precision comparison of experiment and Chiral Glass Condensate (CGC) as a theoretical model of the gluon saturation
- Precision understanding of nucleus with the quark-gluon picture necessary as the initial state of the QGP for understanding its production mechanism

Gluon saturation in e+A collisions

Diffractive cross section

$$\sigma_{\rm diff} \propto [g(x,Q^2)]^2$$

- Most sensitive way to study the gluon saturation
- 10-15% diffractive at HERA e+p
- 25-30% diffractive predicted by CGC at EIC e+A

EIC detector

Many opportunity and need for additional contributions and collaborators

EIC Day-1 detector with BaBar Solenoid (aka EIC-sPHENIX)

BeAST at BNL

TOPSIDE

(Time Optimized PID Silicon Detector for EIC)

JLEIC Detector Concept with CLEO Solenoid

Status of the EIC project

- NSAC 2015 Long Range Plan
 - We recommend a high-energy high luminosity polarized Electron Ion Collider as the highest priority for new facility construction after the completion of FRIB.
- NAS (National Academies of Sciences, Engineering, and Medicine) assessment of a U.S.-Based Electron-Ion Collider Science release in 2018
 - EIC can uniquely address three profound questions
 - How does the mass of the nucleon arise?
 - How does the spin of the nucleon arise?
 - What are the emergent properties of dense systems of gluons?
- EIC detector R&D program operated by BNL with ~\$1.3M / year since 2011
 - Increase anticipated soon after project officially begins
- EIC accelerator R&D already assigned ~\$7M / year since FY2017

EIC Users Group (EICUG)

- EIC Users Group
 - Established in summer 2016
 - 945 members
 - 190 institutes
 - 30 countries
- EICUG structures in place and active
 - Steering Committee
 - Institutional Board
 - Conference & Talks Committee
 - Working groups
 - software
 - polarimetry
 - IR & luminosity
 - Annual meetings
 - SBU (2014), Berkeley (2015), ANL (2016), Trieste (2017), CAU (2018), Paris (2019)

Yellow Report for EIC physics and detector

- Discussion in the EICUG IB meeting this week, Oct. 10th (Thu)
- EICUG Steering Committee plans for the Yellow Report to prepare for design of detectors
 - Quantify physics measurements
 - Study detector concepts
- Form physics/detector, detector/physics and accelerator physics working groups
- Timeline
 - Kick-off meeting in mid-December 2019
 - 4 workshops in 2020
 - (optional) final meeting in January 2021
 - Release in April 2021 (or January, 2021)

Forward hadron calorimeter R&D

- Essential for forward jet reconstruction, hadron energy measurement, and triggering
- Collaboration with UCLA group for STAR upgrade and EIC detector R&D eRD1
- Scalable and re-configurable with a minimal number of mechanical components
 - Minimal resources required for construction and operation
- Fe + scintillator sandwich, 38 layers for STAR FCS
- 10cm x 10cm x 90cm tower
- 4.5 interaction length
- WLS light collection
- SiPM readout
- Expected energy resolution
 - $\sigma_{E}/E = 70\%/\sqrt{E}$ (GeV)
 - Constant/noise terms?

Fermilab FTBF test beam, April 2019

- T1018 test beam for STAR and EIC R&D
 - April 3rd 23rd
- Test with sPHENIX-like configuration
 - April 14th 15th
 - With steel plates between EMCal & HCal
 - 10 cm thick (keeping the return yoke + HCal)
 - 1.5 cm thick (replacing the return yoke with HCal)
 - Performance comparison with & without the steel plates

Setup at Test of Test Beam Facility, FNAL

Slide by G. Nukazuka (Yamagata Univ.)

Setup: Pictures

EMCAL Steel bricks 10cm	HCAL
-------------------------------	------

Calorimeters consist of 4×4 towers.

³ Slide by G. Nukazuka (Yamagata Univ.)

Data Analysis

After summing signal of calorimeters, energy resolution was estimated by gaussian fit to the signal.

Slide by G. Nukazuka (Yamagata Univ.)

Position-sensitive calorimeter

- RHICf @ z=18m from STAR IP
 - Downstream of the DX magnet
 - Acceptance limited by the DX magnet aperture
- For wide $\eta \& p_T$ coverage
 - To fill the gap
 - Large zero-degree detector
 - Azimuthal detector around the beam pipe @ sPHENIX?
 - Upstream of the DX magnet

Position-sensitive calorimeter

- Collaboration with people having common interest in position-sensitive calorimeter The FOCAL proposal
- Tsukuba Univ.
 - ALICE FoCal
- Nagoya Univ.
 - RHICf / LHCf
 - Cosmic-ray group
 - Interest in $\eta \& K^0_s$ measurement
 - Interest in p+O / O+O collisions
- Kobe Univ.
 - EIC / LHeC
 - Radiation tolerance study
- EIC R&D for very forward measurements to be proposed
 - Calorimeter
 - Proton spectrometer (Roman Pot)

Summary

- Physics at EIC
 - 3D picture of nucleons and nuclei
 - Understanding how the nucleon structure and properties emerge from quarks and gluons and their interactions from QCD
 - Gluon saturation at extreme density
 - Systematic understanding of the structure of nucleons and nuclei covering the wide kinematic range
 - Many other topics
 - Spin and flavor structure of nucleons and nuclei
 - Hadronization
- Status of the EIC project
 - NAS assessment release in 2018
 - EIC Users Group (EICUG) and R&D activities ongoing
 - Yellow Report will be produced by EICUG
- Forward hadron calorimeter R&D
 - Fermilab test beam in April 2019
- Position sensitive calorimeter R&D to be developed
 - CFNS & RBRC workshop held in September 2019