Surprising transverse single spin asymmetry of π^0 at almost zero degree in 510 GeV polarized p + p collisions

Minho Kim (Korea Univ./ RIKEN) on behalf of the RHICf collaboration

12 Oct. 5th Japan-Korea meeting

Transverse single spin asymmetry (A_N)

- In polarized p+p collision, A_N is defined as a left-right cross section asymmetry of a specific particle.
- Non-zero A_N of π^0 has been a starting point of the study for the parton's spin-related transversity and more detailed interaction mechanism among quarks and gluons.

3 **<** *η* **<** 4

• Observed non-zero A_N of π^0 ever has been interpreted based on only perturbative picture theoretically.

3 **<** *η* **<** 4

• Observed non-zero A_N of π^0 ever has been interpreted based on only perturbative picture theoretically, but NOT exactly understood yet.

• Observed non-zero A_N of π^0 ever has been interpreted based on only perturbative picture theoretically.

No experimental necessity and effort to measure the very forward π^0 production below 1 GeV/c.

New question to the A_N of forward π^0

• Larger A_N was observed by more isolated π^0 than less isolated one.

■ Non-perturbative process may have a finite contribution to the $\pi^0 A_N$ as well as perturbative one.

Now, we have a strong motivation to measure the A_N of very forward π^0 production.

■ RHICf experiment measured vey forward ($6 < \eta$) $\pi^0 A_N$ to study the non-perturbative contribution to it in detail.

RHIC forward (RHICf) experiment

RHICf detector

- Combination of small (20 mm) and large (40 mm) sampling calorimeters.
- 17 tungsten absorbers, 16 GSO plates (energy) and 4 GSO bar layers (position).
- 44 X_0 : EM shower development is stopped in the middle of the Det.

Position reconstruction of photon

Energy reconstruction of photon

Invariant mass of two photons

- Data is well matched with simulation showing clear π^0 peak around 135 MeV/c² with ~8 MeV/c² peak width.
- Invariant mass was fitted by polynomial for background and Gaussian for π^0 .
- Background part usually comes from coincidence of two photons from different π^0 , not wrong reconstruction. 11/16

π^0 kinematics & A_N calculation

- Very forward π^0 over the x_F range of $0.2 < x_F < 1.0$ and p_T range of $0.0 < p_T < 1.0$ GeV/c was measured.
- Systematic uncertainties by polarization, π^0 azimuthal angle, background A_N subtraction, and beam center was included.

Very forward $\pi^0 A_N$ as a function of x_F

The higher p_T range the A_N is measured in, the more clearly it increases as a function of x_F .

Note that x_F resolutions of the RHICf detector are also much finer than x_F binning in the preliminary plot.

Comparison with previous measurements

Comparison with previous measurements

Is there perturbative contribution even in lower p_T area?

- The origin of x_F scaling may be non-perturbative process.
- Now, understanding the low momentum $\pi^0 A_N$ (< 1 GeV/c) should be a necessary tool to understand the origin of the $\pi^0 A_N$ itself.

What's the next step?

- What made the non-zero $\pi^0 A_N$?
- How competitively each perturbative and non-perturbative process contribute to the $\pi^0 A_N$ will certainly provide a powerful input for it.

Summary

- RHICf experiment measured the A_N of very forward ($6 < \eta$) neutral particles (neutron, π^0 , single γ).
- Preliminary results of RHICf $\pi^0 A_N$ are meaning possible nonnegligible contribution from the non-perturbative process.
- Further analysis with other STAR detectors and data taking will provide a powerful input to understand the origin of the $\pi^0 A_N$.
- We hope many interest from many professors and students!

 - RIKEN L Itaru Nakagawa: itaru@riken.jp Yuji Goto: goto@bnl.gov Ralf Seidl: rseidl@ribf.riken.jp
 - Korea Minho Kim: jipangie@korea.ac.kr (Speaker)
 - Prof. Hong: bhong@korea.ac.kr

Backup

Subject..

/

■ Contents..

New question to the A_N of forward π^0

Smaller A_N was observed with increasing multiplicity of photons (closer to hard scattering event topology).

Operation summary

- RHICf experiment was successfully operated in June 2017.
- Total 110 M events were accumulated for neutral particles (neutron, π^0 , and single photon) during 28 hours.
- Radial polarization.
- **Higher** β^* : 8 m and lower luminosity: 10³¹ cm⁻²s⁻¹ than usual.

Triggers of RHICf detector

Beam center calculation (by neutron)

- Neutrons were used for beam center calculation.
- Square root formula shows good agreement with luminosity one.

Neutron and gamma PID

- L90 represents the longitudinal depth where the energy deposit reaches 90 % of total energy deposit.
- Gamma events can be distinguished from neutron ones using that EM shower develops more rapidly than hadronic one.

A_N calculation

- P (~ 0.55 ± 0.05) can be calculated by polarization monitor.
- R (~ 0.970 ± 0.02) is estimated by luminosity ratio of charged particles near IP.
- ϵ (~ 0.95 ± 0.05) can be studied by comparing actual and diluted A_N in simulation.

What's the next?

What's the next?

- How much both perturbative and non-perturbative process contribute to the $\pi^0 A_N$ should be exactly studied.
- Combined analysis with STAR will make the comparison of two processes possible.