

OR

Measurement of double helicity asymmetries in $\,\pi^{\pm}\,$ production in PHENIX

Taebong Moon

Korea University

Oct 12nd 2019

Motivation

• Jaffe-Manohar Sum Rule:

Proton Spin =
$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

- $\Delta\Sigma$: reasonably well measured. only 30% of proton spin.
- Where is the missing part? (spin crisis)
- Experiments to measure ΔG :
 - Polarized DIS and SIDIS
 - Polarized p+p collisions @ RHIC:
 - PHENIX $\pi/\eta/Jpsi/HFe$ ALL:

PRD 93 011501 (2016), PRD 91 032001 (2015), PRD 90 012007 (2014), PRL 103 012003 (2009) and so on.

- STAR Jet/Di-jet A_{LL} :

PRL 115 92002 (2015), PRD 95 71103 (2017)

Motivation: Accessing ΔG via A_{LL} in p+p col.

$$A_{LL} = \frac{d\Delta\sigma}{d\sigma} = \frac{\sum_{f_1, f_2 = q, \bar{q}, g} \Delta f_1 \otimes \Delta f_2 \otimes \Delta \hat{\sigma}^{f_1 f_2 \to fX} \otimes D_f^h}{\sum_{f_1, f_2 = q, \bar{q}, g} f_1 \otimes f_2 \otimes \hat{\sigma}^{f_1 f_2 \to fX} \otimes D_f^h}$$

Motivation: "Directly" access the sign of ΔG

$$A_{LL}^{\pi^{+}} \approx a_{gg} \Delta g \Delta g + a_{ug} \Delta u \Delta g$$
$$= A_{LL}^{\pi^{-}} \approx a_{gg} \Delta g \Delta g + a_{dg} \Delta d \Delta g$$
$$= A_{LL}^{\pi^{-}} \approx a_{gg} \Delta g \Delta g + a_{dg} \Delta d \Delta g$$

Motivation: "Directly" access the sign of ΔG

Current understanding

PRD 93, 011501 (2016)

- The uncertainties have been reduced for x > 0.05 based on RHIC data up to Run-2009.
- Expanding experimental sensitivity to lower x region, x < 0.05, with PHENIX π^0 at 510 GeV.
- Showed non-zero gluon polarization via $\pi 0 @ 510$ GeV in Run-2012-2013.

PHENIX

- Tracking
 - Drift Chamber (DC)
 - Pad Chamber (PC1/PC3)
 - Silicon Vertex Tracker (VTX) in 2013
- π[±] Identification
 - Ring Imaging Cherenkov Detector (RICH)
 - Electromagnetic Calorimeter (PbSc/PbGl)
 - Hadron Blider Detector (HBD) in 2009

- Relative Luminosity
 - Beam Beam Counter (BBC)
 - Zero Degree Calorimeter (ZDC)
- Acceptance
 - lηl<0.35
 - $\Delta \phi = 2 \times \pi/2$

Data recoding @ PHENIX

- 14 (150) pb⁻¹ polarized p+p data available from dataset in 2009 (2013).
- Could improve statistical precision of A_{LL} in Run-13 compared to Run-9.

Data recoding and trigger set in Run-9 and Run-13

PHENIX Longitudinal Run

PHENIX EMCal-RICH Trigger (ERT) Set

Year	Sqrt(s) [GeV]	Int. L [pb ⁻¹]	P (%)	FoM (LP ⁴)		Trigger Name and Threshold [GeV]			
					Year	4x4A	4x4B	4x4C	2x2E
2009	200	14	57	1.4	2009	2.1	2.8	1.4	0.6
2013	510	150	55	14	2013	4.7	5.6	3.7	2.2

- Due to the lack of hadron trigger in PHENIX, the statistical precision of the π^{\pm} data is limited in both Run-9 and Run-13.
- Alternatively, high $p_T \gamma$ triggers are used for high $p_T \pi^{\pm}$ analysis.

Particle (π^{\pm}) ID and background sources

- Track can be divided into two categories according to RICH response at p_T 5~15GeV/c.
 - RICH Hit: e^{\pm} and $\pi^{\pm}.$
 - No RICH Hit: K[±] and p(-bar).

Particle	Electron	Pion	Kaon	Proton	
Threshold	30MeV/c	4.7GeV/c	16GeV/c	30GeV/c	

Particle (π^{\pm}) ID and background sources

- E/p ~ 1 : e[±] deposits most of their energies in the EM shower.
- E/p < 0.2: Conversion e[±]s are reconstructed with higher pT.

Measuring A_{LL} in experiment

A_{LL} in π^{\pm} production at 510 GeV and 200 GeV

Improvement of statistical precision of $\pi^{\pm} A_{LL}$ in Run-13.

Expanding experimental sensitivity to lower x_T region, < 0.05, with in Run-13.

ALL in π^{\pm} and π^{0} production at 510 GeV

Theory curves with $\Delta G > 0$ follow measured A_{LL} within statistical uncertainty.

It looks like that the measurements are consistent with positive gluon polarization.

Summary and outlook

- A_{LL} in π^{\pm} production can directly access to the sign of the gluon polarization.
- A_{LL} in π^{\pm} production at 510 GeV has been measured for the first time in the world.
- As a complementary probe with improved statistics, might help to double-check the gluon polarization.

Thanks!

Data recoding and trigger set in Run-9 and Run-13

PHENIX Longitudinal Run

PHENIX EMCal-RICH Trigger (ERT) Set

Year	Sqrt(s) [GeV]	Int. L [pb ⁻¹]	P (%)	FoM (LP ⁴)		Trigger Name and Threshold [GeV]			
					Year	4x4A	4x4B	4x4C	2x2E
2009	200	14	57	1.4	2009	2.1	2.8	1.4	0.6
2013	510	150	55	14	2013	4.7	5.6	3.7	2.2

- 14 (150) pb⁻¹ polarized p+p data available from dataset in 2009 (2013).
- Due to the lack of hadron trigger in PHENIX, the statistical precision of the π^{\pm} data is limited in both Run-9 and Run-13.
- Alternatively, high $p_T \gamma$ triggers are used for high $p_T \pi^{\pm}$ analysis.

- The world's only polarized p+p collider
 - Longitudinal or transverse polarization
 - Up to \sqrt{s} = 510 GeV

Momentum Issue

Example: with correct beam offset

Example: with wrong beam offset

pT ~ charge/alpha

alpha_reco(wrong) > alpha_real

wrong beam center can decrease pT of positive track

Real particle track

Real beam center

Wrong beam center

Japan-Korea PHENIX Meeting 2019-10 @ Sejong Univ.

DC

alpha_reco(wrong)

alpha_real

Example: with wrong beam offset

pT ~ charge/alpha

alpha_reco(wrong) < alpha_real</pre>

wrong beam center can increase pT of negative track

Real particle track

Real beam center

Wrong beam center

Japan-Korea PHENIX Meeting 2019-10 @ Sejong Univ.

alpha_reco(wrong)

alpha_real

DC

Raw pT Spectra at 510 GeV in 2012 and 2013

Double-check

RunNumber: 386885

- Double checked alpha vs. phi using the same run in Ana1130.
- Alpha is almost 0. That means the beam offset calibration is acceptable.
- I looked at alpha vs. phi closely.

alpha vs phi in descending order of raw trigger rate

Name	Bit Mask	Scale Down	State	Raw Trigger Count	Raw Trigger Rate	Live Trigger Count	Live Trigger Rate
BBCLL1(>0 tubes)	0x0000001	18453	Enabled	3434784215	1017111.11	2800513371	829290.31
BBCLL1(>0 tubes) novertex	0x0000002	3989	Enabled	5563213233	1647383.25	4537432511	1343628.22
ZDCLL1wide	0x0000004	3690	Enabled	522248054	154648.52	429594384	127211.84
BBCLL1(noVtx)&(ZDCNIIZDCS)	0x0000008	3790	Enabled	2333787041	691082.93	1919347914	568358.87
BBCLL1(>0 tubes) narrowvtx	0x00000010	500	Enabled	1718820631	508978.57	1401144806	414908.15

Raw Trigger Rate: 2787256.14

α vs φ (Run13pp510 : 391457)

Raw Trigger Rate: 2397287.86

α vs φ (Run13pp510 : 393071)

Raw Trigger Rate: 2185816.43

α vs φ (Run13pp510 : 394395)

Raw Trigger Rate: 2148649.85

α vs φ (Run13pp510 : 388276)

Raw Trigger Rate: 1900192.05

α vs φ (Run13pp510 : 391877)

Raw Trigger Rate: 1795081.98

α vs φ (Run13pp510 : 390240)

Raw Trigger Rate: 1769864.82

α vs φ (Run13pp510 : 390241)

Raw Trigger Rate: 1647383.25

α vs φ (Run13pp510 : 386885)

Raw Trigger Rate: 1081912.40

α vs φ (Run13pp510 : 390022)

Raw Trigger Rate: 1053916.98

α vs φ (Run13pp510 : 390023)

Wrong Drift Time

Anode(positively charged electrode)

Anode(positively charged electrode)