Si-based forward tracking calorimeter

Y. Kwon (Yonsei Univ.)

ITS upgrade, An example of MAPS

MAPS, something Korea can do very well...

2021-2024

Key features

- Size of 1.5 (cm) x 3 (cm), 25(μ) x 25(μ) pixel, ~1(μ s) shaping time
- Sensors thinned down to $50/100(\mu)$ as a part of low material budget detector design (0.3% X₀ per layer for 3 inner layers, can we remove water cooling?)
- Sensors include front end and modest digital circuitry with 1 Gbps data link.
- PCIe based readout board based on commercial FPGA.

Our involvement

Design

Test board

Production test equipment & test

LS3 upgrade, Evolution in MAPS

We will make key contributions in the new upgrade.

Advanced technology 180 (nm) CIS process → 63 (nm) CMOS process

15 (μ m) x 15(μ m) pixel Shaping time for front end : 10 (ns) – 1(μ s) Stitching & large sensor area

Advanced digital IP's?

2026-2029

Future

eRHIC Kinematics

RHIC proton/nucleus beam energies, 200/100A GeV $y_p = 6.1$ $y_A = 5.4$

Phase-I, lepton beam energies 5 - 10 GeV: $y_e = 9.9 - 10.6$ Phase-II, lepton beam energies 10 - 30 GeV: $y_e = 10.6 - 11.7$

$$y_{beam,e+p} \approx 10.8 + 5.8$$

Gain from collider operation

Virtual photon kinematics

$$Q^{2} = -q^{\mu}q_{\mu} = -(k^{\mu} - k'^{\mu}) \cdot (k_{\mu} - k'_{\mu}) = 2k^{\mu} \cdot k'_{\mu} = 4kk' \sin^{2}\frac{\theta}{2}$$

eRHIC detector design

https://wiki.bnl.gov/eic/index.php/ERHIC_Dedicated_Detector_Design

MAPS VST(Barrel micro-vertex tracking detector) FST/Backward vertex tracker (FST/BST)

https://wiki.bnl.gov/eic/index.php/ERHIC_Dedicated_Detector_Design

sPHENIX

- MVTX
- INTT
- TPC
- EMCal
- HCal

Generic concept study

Reconstruction