A Large Ion Collider Experiment

LHC-ALICE実験における GEM-TPC高度化の開発と現状

郡司 東大CNS

ALICE | MPGD研究会 2019 | 12.06-07.2019 | T. Gunji

関連する過去の講演

- 第9回@長崎総合科学大学(2012)
 - 浜垣:GEM-TPC Project at LHC ALICE
- 第10回@京都大学(2013)
 - 山口:ALICE実験におけるGEM-TPC開発
- 第11回@東北大学(2014)
 - 郡司:LHC-ALICE実験MPGDを用いたTPC検出器開発の現状
 - 勇川:GEMとMICROMEGASを用いたイオンバックフローの研究
- 第12回@広島大学(2015)

- Large Hadron Collider (CERN) :最高エネルギーの衝突型ハドロン加速器
- ALICE実験:高エネルギー重イオン衝突により、「クォーク・グルーオンプラズ マの物性研究」を進める

ALICE実験の測定器高度化(2019-2020)

2021年以降のLHC Run3+Run4において、50kHzのPb-Pb衝突事象の全てを記録 →これまでのx100のデータを取得

中央シリコンピクセル検出器(ITS)

7 層. MAPS技術を採用

前方シリコンピクセル検出器(MFT)

•5層.ITSと同じピクセルを採用

タイムプロジェクションチェンバー(TPC)

- wire増幅+gating grid → 3kHzが限界
- wire増幅からGEM増幅へ高度化
- ・GGなしの連続読み出し.読出系も刷新

DAQ

- 50kHzのPb-Pbの全てを記録
- ・生データ3.5 TB/sをオンラインで物理情 報に再構成し圧縮する(I00GB/s)

A Large Ion Collider Experiment

M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001, Fig. 34.15

Operation of Gating Grid

GG is employed to prevent ions from escaping into drift space (="ion backflow")

After 100us of electron drift time, the gating grid needs to be kept closed for 200 us to prevent back-drift ions into the drift space (= dead time for TPC) \rightarrow total time ~ 300 used limits maximum readout rate to 3 kHz

Gas Electron Multiplier (GEM)

- high rate capability (< I MHz/mm²)
- ion backflow suppression
- fast signal
- safer operation by stacking GEMs
- Less ExB effect
- ...

Standard GEM : 50um insulator (Kapton)+5um copper layers on both sides, ϕ ~70um, pitch~140um

If IBF is good under 50 kHz Pb-Pb, TPC can run continuously without any gating.

Goal: @Gain=2000 |BF < |%| $\sigma(dE/dx) < 12\%$ for ⁵⁵Fe

Ion backflow - 3 & 4 GEM layers

The number of GEM layers V_{GEM}, E_{T1}, E_{T2}, E_{T3} scans

3 GEM configuration → minimum IBF ~ 2%

Ion backflow - more combinations

Combination of GEMs with different pitches

standard pitch (**S**) 140 mu large pitch (**LP**) 280 mu small pitch (**SP**) 90 mu medium pitch (**MP**) 200 mu

Our Baseline = S-LP-LP-S

ALICE | 新学術領域「クラスター階層」「量子ビーム応用」合同検出器 WS | 20-21.9.2019 | T. Gunji 10

Ion backflow - Simulations

Executive Summary of IBF studies - confirmed by Garfield simulations

Ion backflow - 2 GEM + MMG

12

IBF (%)

Ion backflow - "COBRA-GEM"

400um pitch

Alternative solution = COBRA-GEM

577um pitch

200um COBRA

By applying ΔV_{AC} , further IB suppression can be achieved.

Originally developed by J.F.C.A. Veloso et al., NIM A639 (2011) 134-136

GEM-COBRA-COBRA stack

Issues: worse resolution (σ ~20%), charge-up

Beamtest at CERN-PS and SPS

2 GEM + MMG: discharge probability = $10^{-9} - 10^{-11}$

GEM mass production

GEM mass production - GEM-QA

QA at CERN

- Coarse optical check
 - Search for mechanical defects
- HV test
 - apply 500 V for 15' in dry N2 $\,$
 - Ileak < 0.5 nA/segment, no repeated sparking
 - all segments tested independently using multi-channel pA-meters

Advanced QA at Helsinki/Budapest

Hole size distributions

Etching defects

- High definition scanning
 - Measure outer/inner hole diameter
- Gain uniformity test
 - Measure one foil from a batch
- Long term HV test (6h or more)

GEM processing and Chamber production

GEM framing

ROC assembly and commissioning (gas tightness, gain/IBF uniformity, irradiation tests)

GEM chamber installation in 2019

ROC stored at CERN

Completion of GEM and FEC installation in 2019

Front End Electronics

ALICE

SAMPA and GBT

SAMPAASIC Developed by Sao Paolo team

- I 30 nm TSMC CMOS
- PASA+ADC+DSP(BC, ZS, TC, HC, etc)
- 32 channel/chip
- Both polarities
- Continuous or triggered mode
- PA gain: 4, 20, 30 mV/fC
- SA peaking time : 80, **60**, 300 ns
- Sampling rate: 5, 10, 20 MHz
- 2Vpp, 10 bit ADC
- output: 320 Mbps x 10 serial links
- 15 30 mW/channel

GBT ASIC

Developed by CERN and LHC experiments

J.Adolfsson et al 2017 JINST 12 C04008

- Timing & Trigger & Data transmission
- Maximum BW : 4.8 Gbps data

• TPC: 4 Gbps/GBT link

- Radiation hardness (~ 100Mrad)
- FPGA IP core library available
- Slow control via GBT-SCA through I²C

Backend module = Common Readout Unit

- Common project between LHCb and ALICE
- PCI Express Gen3 card (installed in FLP-PC)
 - Maximum output BW : I 28 Gbps (~90 Gbps)
- Receive data from GBT
 - Maximum 48 optical in/out (215 Gbps)
 - For TPC: 20 GBTs are connected to 1 CRU (80Gbps)
 - ~350 cards are needed for TPC
- Intel/Altera Arria 10 FPGA
 - Online data processing in FPGA
 - Base line correction
 - Common mode filtering
 - Channel sorting
 - (Cluster Finder)
 - 1150k LE, 427k ALMs, 1518 DSP blocks
 - 96 x 17.4 Gbps SERDES

new DAQ system

Continuous readout of the TPC

 \rightarrow Data volume = 3.5 TB/s. Impossible to write all data in the storage!

-> Continuous data processing and online data reconstruction

FLP and EPN

AITCF

FLP (server (ASUS, Dell, SM) still under evaluation) EPN (server/processors etc still under evaluation)

144 nodes are needed for TPC. Data corrections and online clustering \rightarrow data compression by x7. Output to EPN farm: up to 100 Gb/s/FLP

Speed-up factor of HLT wrt offline (Run2) tracking on single CPU

- LT CPU Tracker (Xenon 2697, 2.7GHz) Mean occupancy at IR = 50 kHz
- ~750 EPN nodes and ~1000 GPUs will be needed.
- Full tracking by GPU
 - Online tracking by GPU was employed in HLT during Run2 operation. \rightarrow x20-40 CPU
- Many developments are on-going
 - Hardware evaluation
 - Data transport between FLPs and EPNs Bandwidth (InfiniBand) test to storage
 - Load balancing
 - . . .

動径方向のずれ O(20 cm)

space-charge distortion correction

重イオンビーム衝突頻度 : 50 kHz 陽イオンドリフト時間 : 160 ms →8000事象分の空間電荷がTPC検出器内部に蓄積

24

space-charge distortion correction

オンライン飛跡再構成のために端部パッド上でのずれO(20 cm)をO(100 µm)までリアルタイムで高速補正 ・ 数分毎の読み出しチェンバーからの電流値→大局的ずれを補正O(mm)

• 5ms毎の読み出しチェンバーからの電流値→局所的空間電荷ゆらぎを機械学習で補正O(100 µm)

教師あり機械学習 Convolutional Neural Network with Keras 動径方向:17分割 ビーム軸方向:17分割 方位角方向:90分割

教育データ 空間電荷密度のゆらぎ:ρ_{SC} – 〈ρ_{SC}〉 端部パッド上でのずれのゆらぎ:dr – ⟨dr⟩

Pre-commissioning at P2

Status on 21 Nov: Operating gas mixture not yet nominal. Field Cage at 90 kV. GEM stacks in A01 and A16 at 98%. Laser tracks in TPC

Timeline for the completion of upgrade ALICE

2020年3月~:TPCの再設置 2020年6月~:MFTの設置 2020年7月~:ITSの再設置 2020年II月~:コミッショニング (2019-2020:Run coordinator:郡司)

2020	2021
Oct Nov Dec Jan Feb Mar Apr May Jun	Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct N
TPC upgrade	
Work on service	S
TRD rework	
PHOS/DCal/CPV reinstallation	
Reins	tall TPC
	L Install MFT
	Install ITS
	L FIT-A
	ITS-MFT-FIT commissioning
	ALICE Global Commissioning
	Machine checkout (no UX access)
	Machine commissionig with beam
	 First stable beams (approx.)

まとめ

- ・ALICE実験の高度化が順調に進行中
- 中央飛跡検出器(タイムプロジェクションチェンバー)の開発、要求仕様の策定とそれを満たすGEM検出器の開発に携わってきた
- GEMのmass production, QA, chamberの製作が終わり、TPCへの据付作業も無 事に終了した
- •||月頃から、読み出しテストや宇宙線を用いた動作試験を進めている
- ・その一方で、データ収集系(CRUとEPNでのデータ処理)の整備を進めている
 - FPGAでのデータ処理(baseline and common mode correction, ZS, cluster finder)
 - GPUでのトラッキング
 - GPUや機械学習を用いた空間電荷効果補正
- 来年度の中頃から、全システムのコミッショニングを行う

資料 (Lol, CDR, TDR)

CERN-LHCC-2015-006